According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.
Answer:
14 m/s
Explanation:
The motion of the stone is a free fall motion, so an accelerated motion with constant acceleration g = 9.8 m/s^2 towards the ground. So, we can use the following SUVAT equation:

where
v is the final speed of the stone as it reaches the water
u = 0 is the initial speed
g = 9.8 m/s^2 is the acceleration
h = 10 m is the distance covered by the stone
Solving for v, we find

Answer:
Work is done by the heart on the blood during this time is 0.04 J
Explanation:
Given :
Mass of blood pumped, m = 80 g = 0.08 kg
Initial speed of the blood, u = 0 m/s
Final speed of the blood, v = 1 m/s
Initial kinetic energy of blood is determine by the relation:

Final kinetic energy of blood is determine by the relation:

Applying work-energy theorem,
Work done = Change in kinetic energy
W = E₂ - E₁

Substitute the suitable values in the above equation.

W = 0.04 J
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Change in market price is m<span>ovement along the demand curve. </span>
When a car travelling at an initial velocity of 10 m/s applies the brakes and bring ... accelerates from rest for a time of 8 seconds with an acceleration of 3.2m/s^2?