X intercept: when Y = 0
Y intercept: when X = 0
Plug into equation
4x + 6(0) = 12
4x = 12, x = 3
Therefore x int = (3,0)
4(0) + 6y = 12
6y = 12, y = 2
Therefore y int = (0,2)
Plug those points then draw a line through them
Answer:
10
Step-by-step explanation:
let the lengths of sides=x (each)
x²+x²=(10√2)²
2x²=100×2
x²=100
x=√100=10
Answer:
-9
Step-by-step explanation:
You take them both and multiply then divide then subtract
What’s the problem doggggggggggg
Answer:
v = 1/(1+i)
PV(T) = x(v + v^2 + ... + v^n) = x(1 - v^n)/i = 493
PV(G) = 3x[v + v^2 + ... + v^(2n)] = 3x[1 - v^(2n)]/i = 2748
PV(G)/PV(T) = 2748/493
{3x[1 - v^(2n)]/i}/{x(1 - v^n)/i} = 2748/493
3[1-v^(2n)]/(1-v^n) = 2748/493
Since v^(2n) = (v^n)^2 then 1 - v^(2n) = (1 - v^n)(1 + v^n)
3(1 + v^n) = 2748/493
1 + v^n = 2748/1479
v^n = 1269/1479 ~ 0.858
Step-by-step explanation: