The problem says that <span>Brandon sights a helicopter above a building that is 200 feet away at an angle of elevation of 30 degrees. So, you can calculate the height asked, by following this procedure:
</span>
Tan(α)=Opposite leg/Adjacent leg
α=30°
Opposite leg=x
Adjacent leg=200 feet
When you substitute these values into the formula above (Tan(α)=Opposite leg/Adjacent leg), you have:
Tan(α)=Opposite leg/Adjacent leg
Tan(30°)=x/200
You must clear "x":
x=200xTan(30°)
Therefore, the value of "x" is:
x=115 feet
<span>
How high above the ground the is the helicopter?
The answer is: 115 feet</span>
Answer:
Domain = [5,∞)
Step-by-step explanation:
Given: 
We are given that f(x) is shifted right by 5 units.
Rule : f(x)→f(x-b)
The graph f(x) shifted b units right
So, using rule :
→
So, 
Now to find domain:


So, Domain = [5,∞).
Answer:
$7
Step-by-step explanation:
The only thing I can think of to rewrite this is either 8+72t or changing the variable to a different letter. The expression is already in its simplest form.
Answer:
12m
Step-by-step explanation
If the height of the ball after x seconds be modelled by the equation
h(x)=−(x−2)² +16
The height of the ball at the time it is thrown will be the height at the initial time. At that point that it is initially thrown the time is 0seconds i.e x = 0
To get the height at t x = 0seconds, we will substitute x = 0 into the modeled function to have;
h(0) = -(-0-2)²+16.
h(0) = -(-2)²+16
h(0) = -4+16
h(0) = 12
The height of the ball at the time the ball is thrown is 12m