Answer: Choice A
S9 = (9/2)*(2+26)
===============================================
The formula is
Sn = (n/2)*(a1+an)
where
Sn = sum of the first n terms (nth partial sum)
n = number of terms
a1 = first term
an = nth term
In this case,
n = 9
a1 = 2 (plug in n = 1 into the formula an = 3n-1 and simplify)
an = a9 = 26 (plug n = 9 into the formula an = 3n-1 and simplify)
So,
Sn = (n/2)*(a1+an)
S9 = (9/2)*(2+26)
will help us find the sum of the first 9 terms of this arithmetic sequence
Answer:
From your question, I am assuming you are talking about an absolute value graph. In this case the answer would be y = |2 + 6|
Step-by-step explanation: Always remember, when you are graphing absolute value graphs:
When you shift left or right, you put the amount you are shifting inside the absolute value sign.
When you are shifting up or down, you put the amount you are shifting outside the absolute value sign.
When shifting left on a graph, you usually think of subtraction. However, when dealing with absolute value graphs, when you are shifting left, you use addition, as you can see in this problem.
The same goes for right. You use subtraction when shifting right, contrary to what you may think.
However, when you go up, you still use addition, and when you shift down, you still use subtraction.
Electrons do not have FEET
<h3>
Answer: 28</h3>
==========================================================
Explanation:
Method 1
Imagine a table with 8 rows and 8 columns to represent all possible match-ups. You can actually draw out this table or just think of it as a thought experiment.
There are 8*8 = 64 entries in the table. Along the northwest diagonal, we have each team pair up with itself. This is of course silly and impossible. We cross off this entire diagonal so we drop to 64-8 = 56 entries.
Then notice that the lower left corner is a mirror copy of the upper right corner. A match-up like AB is the same as BA. So we must divide by 2 to get 56/2 = 28 different matches.
----------------------------------
Method 2
There are 8 selections for the first slot, and 8-1 = 7 selections for the second slot. We have 8*7 = 56 permutations and 56/2 = 28 combinations.
----------------------------------
Method 3
Use the nCr combination formula with n = 8 and r = 2

There are 28 combinations possible. Order doesn't matter (eg: match-up AB is the same as match-up BA).
Notice how the (8*7)/2 expression is part of the steps shown above in the nCr formula.