1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rainbow [258]
2 years ago
6

Which values of x make this equation true?

Mathematics
1 answer:
Evgesh-ka [11]2 years ago
3 0

Answer:

{x}^{2}  + x = 12 \\  {x}^{2}  + x - 12 = 0 \\  {x }^{2}  + 4x - 3x - 12 = 0 \\ x(x + 4) - 3(x + 4) = 0 \\ (x + 4)(x - 3) = 0 \\ either \:  \:  \: or \:  \\ x =  - 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x = 3

the answer is -4 and 3

You might be interested in
HelP me plz i'll give brainliest or whatever
aivan3 [116]
The answer is d

explanation: its right in between 50 and 60 making it 55, and the picture is showing it as an angle.
3 0
3 years ago
Help The first one is what is on sale and the bottem is what needs to be solved!
Hatshy [7]

Answer:

jacket 80

shoes 32 and 16

shirt 9   , 8.04,   4.08

Step-by-step explanation:

you need to multiply the original cost by the percentage off and then subtract from the original

example

Jacket is originally priced at $120 it is on sale for 1/3 off which means that if you divide 120 by 3 you will get 40.  but you would have to subtract the 40 from 120 giving you 80

7 0
2 years ago
Read 2 more answers
the price of a shirt was $16. there is a price increase of 4%. which of the following expression gives the new price of the shir
FrozenT [24]

Answer:

$16.64

Step-by-step explanation:

$16 + 4% = $16.64

7 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
what is 9z+2=6z-10-z-4 we have to do something called railroad tracks where we put lines down the sides of the equal sign but I
Colt1911 [192]
You want to solve for 'z'.
First combine like terms on either side of the equal sign.

Left side:  9z +2  ----> No like terms, leave alone

Right side: 6z - 10 -z - 4  ----> circle like terms and add
                    6z -z = 5z
                   -10 -4 = -14
Now the equation is:
9z + 2 = 5z - 14

Get all the 'z' terms on the left side and all the numbers on right side.
You can move a term to the other side if you flip the sign.

Move 5z to left side, flip the sign to -5z
Move '2' to right side, flip the sign to -2

9z - 5z = -2 -14

Add like terms
4z = -16

Divide by 4 on both sides
z = -4
3 0
3 years ago
Other questions:
  • CAN SOMEONE HELP ME PLZ!!!
    10·1 answer
  • How far does a train go in 100 minutes
    8·2 answers
  • Rewrite the Product in Exponential Form : a. a. a. b. b. b. b ​
    15·1 answer
  • What is the cube root of 1000
    14·2 answers
  • -3=6m+5+4 i really need help with thid
    6·2 answers
  • Need help/easy, please help
    11·2 answers
  • Find octal expansion of (B5D)16.
    10·1 answer
  • Can someone help me please look at picture
    10·2 answers
  • F(x) = -3(x - 11)(x + 1)
    14·1 answer
  • Help me!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!