We have the coordinates
J (2,5)
K (4,19)
Since we are to find the point that partitions the line segment into 3:2 ratio, we have 5 equal parts of the line segment. So,
Get the horizontal distance:
4 - 2 = 2
Divide by 5
2/5
Multiply by 3
2/5 x 3 = 1.2
Add this to the x coordinate of J
2 + 1.2 = 2.2
Get the vertical distance:
19 - 5 = 14
Divide by 5
14/5
Multiply by 3
14/5 x 3 = 8.4
Add this to the y coordinate of J
5 + 8.4 = 13.4
The coordinates of the point is
(2.2,13.4)
Answer:
you have to use the protractor tool
Answer:
y = 1/2x - 3
Step-by-step explanation:
The line intercepts with the y-axis at -3 and its pattern is going right two and up one.
The matrix represents the system:
-3x+5y=15
2x+3y=-10, which is choice c.
We can see it more clearly from the way we multiply matrices, as follows:
![\[ \left[ {\begin{array}{cc} -3 & 5 \\ \ 2 & 3 \\ \end{array} } \right] \] \cdot \[ \left[ {\begin{array}{c} x \\ y \\ \end{array} } \right] \]= \left[ {\begin{array}{c} -3\cdot x+5\cdot y \\ 2\cdot x+3\cdot y \\ \end{array} } \right] \]= \[ \left[ {\begin{array}{c} 15 \\ -10 \\ \end{array} } \right] \]](https://tex.z-dn.net/?f=%20%5C%5B%0A%20%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bcc%7D%0A%20%20%20-3%20%26%205%20%5C%5C%0A%20%20%20%20%5C%202%20%20%26%203%20%5C%5C%0A%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D%0A%5C%5D%20%5Ccdot%20%20%5C%5B%0A%20%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%0A%20%20%20x%20%5C%5C%0A%20%20%20%20y%20%5C%5C%0A%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D%0A%5C%5D%3D%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%0A%20%20%20-3%5Ccdot%20x%2B5%5Ccdot%20y%20%5C%5C%0A%20%20%20%202%5Ccdot%20x%2B3%5Ccdot%20y%20%5C%5C%0A%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D%0A%5C%5D%3D%20%5C%5B%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%2015%20%5C%5C%20-10%20%5C%5C%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D%20%5C%5D)
Answer: C