Answer:
Since we can't assume that the distribution of X is the normal then we need to apply the central limit theorem in order to approximate the
with a normal distribution. And we need to check if n>30 since we need a sample size large as possible to assume this.

Based on this rule we can conclude:
a. n = 14 b. n = 19 c. n = 45 d. n = 55 e. n = 110 f. n = 440
Only for c. n = 45 d. n = 55 e. n = 110 f. n = 440 we can ensure that we can apply the normal approximation for the sample mean
for n=14 or n =19 since the sample size is <30 we don't have enough evidence to conclude that the sample mean is normally distributed
Step-by-step explanation:
For this case we know that for a random variable X we have the following parameters given:

Since we can't assume that the distribution of X is the normal then we need to apply the central limit theorem in order to approximate the
with a normal distribution. And we need to check if n>30 since we need a sample size large as possible to assume this.

Based on this rule we can conclude:
a. n = 14 b. n = 19 c. n = 45 d. n = 55 e. n = 110 f. n = 440
Only for c. n = 45 d. n = 55 e. n = 110 f. n = 440 we can ensure that we can apply the normal approximation for the sample mean
for n=14 or n =19 since the sample size is <30 we don't have enough evidence to conclude that the sample mean is normally distributed
The numerator would be 9 because u multiply 3/4 by 3 to get the bottom number to 12 so multiplying 3x3=9
Answer:
x=12
Step-by-step explanation:
The sum of the angles of a triangle is 180 degrees
5x+8x+2x =180
Combine like terms
15x = 180
Divide by 15 on each side
15x/15 =180/15
x=12