Answer:
V2 = final volume = 8.3m^3
Explanation:
Given P1 = 445 kPa, V1 = 2.6 m^3, P2 = 140 kPa
From PV = constant; P1V1 =P2V2 , where V2 = final volume
V2 = P1V1/P2
Substituting in the equation ;
V2 = 445 x 2.6 / 140
V2 = final volume = 8.3m^3
A system is a linear system if all equations inside the system can be simplified into the form,

aka linear form of a linear equation.
So to sum up, a system is linear if all equations are linear equations.
Hope this helps :)
Answer:
The electrical work for the process is 256.54 Btu.
Explanation:
From the ideal gas equation:
n = PV/RT
n is the number of moles of air in the tank
P is initial pressure of air = 50 lbf/in^2 = 50 lbf/in^2 × 4.4482 N/1 lbf × (1 in/0.0254m)^2 = 344736.2 N/m^2
V is volume of the tank = 40 ft^3 = 40 ft^3 × (1 m/3.2808 ft)^3 = 1.133 m^3
T is initial temperature of air = 120 °F = (120-32)/1.8 + 273 = 321.9 K
R is gas constant = 8.314 J/mol.k
n = 344736.2×1.133/8.314×321.9 = 145.94 mol
The thermodynamic process is an isothermal process because the temperature is kept constant.
W = nRTln(P1/P2) = 145.94×8.314×321.9×ln(50/25) = 145.94×8.314×321.9×0.693 = 270669 J = 270669 J × 1 Btu/1055.06 J = 256.54 Btu
Answer
See explanation for step by step procedures towards getting answers
Explanation:
Given that;
A fluid flows along the x axis with a velocity given by V = (xt) i ˆ, where x is in feet and t in seconds. (a) Plot the speed for 0 ≤ x ≤ 10 ft and t = 3 s. (b) Plot the speed for x = 7 ft and 2 ≤ t ≤ 4 s. (c) Determine the local and convective acceleration. (d) Show that the acceleration of any fluid particle in the flow is zero. (e) Explain physically how the velocity of a particle in this unsteady flow remains constant throughout its motion.
See attachments for further explanations