Explanation:
<u>(a)</u>
<u>The measure of material's ability to conduct thermal energy (heat) is known as thermal conductivity.</u> For examples, metals have high thermal conductivity, it means that they are very efficient at conducting heat.<u> The SI unit of heat capacity is W/m.K.</u>
The expression for thermal conductivity is:

Where,
q is the heat flux
is the thermal conductivity
is the temperature gradient.
<u>(b)</u>
<u>Heat capacity for a substance is defined as the ratio of the amount of energy required to change the temperature of the substance and the magnitude of temperature change. The SI unit of heat capacity is J/K.</u>
The expression for Heat capacity is:

Where,
C is the Heat capacity
E is the energy absorbed/released
is the change in temperature
<u>(c)</u>
<u>Thermal diffusivity is defined as the thermal conductivity divided by specific heat capacity at constant pressure and its density. The Si unit of thermal diffusivity is m²/s.</u>
The expression for thermal diffusivity is:

Where,
is thermal diffusivity
is the thermal conductivity
is specific heat capacity at constant pressure
is density
Answer:
Option E
Explanation:
All the given statements are true except the velocity gradients normal to the flow direction are small since these are not normally small. It's true that viscous effects are present only inside the boundary layer and the fluid velocity equals the free stream velocity at the edge of the boundary layer. Moreover, Reynolds number is greater than unity and the fluid velocity is zero at the surface of the object.
Answer:
The length of tank is found to be 0.6 m or 600 mm
Explanation:
In order to determine the length, we need to find a volume for the tank.
For this purpose, we use ideal gas equation:
PV = nRT
n = no. of moles = m/M
Therefore,
PV = (m/M)(RT)
V = (mRT)/(MP)
where,
V = volume of air = volume of container
m = mass of air = 4.64 kg
R = General Gas Constant = 8.314 J/mol.k
T = temperature of air = 10°C + 273 = 283 K
M = molecular mass of air = 0.02897 kg/mol
P = Pressure of Air = 20 MPa = 20 x 10^6 N/m²
V = (4.64 kg)(8.314 J/mol.k)(283 k)/(0.02897 kg/mol)(20 x 10^6 N/m²)
V = 0.01884 m³
Now, the volume of cylindrical tank is given as:
V = 0.01884 m³ = π(Diameter/2)²(Length)
Length = (0.01884 m³)(4)/π(0.2 m)²
<u>Length = 0.6 m = 600 mm</u>
The change in annual cost when Q is increased from 340 to 341 is -1.23 and the instantaneous rate of change when Q = 340 is -1.25
<h3>How to find the Instantaneous rate of change?</h3>
The annual inventory cost C for a manufacturer is given as;
C = (1012000/Q) + 7.5Q
where Q is the order size when the inventory is replenished.
Now, the change in C can be calculated by evaluating the cost function at Q = 340 and Q = 341
Change in C = [1,012,000/341 + 7.5*341] - [1,012,000/340 + 7.5*340] ≈ -1.23
Instantaneous rate of change in C is first order derivative C':
C'(Q) = -1,012,000/(Q²) + 7.5
C'(340) = -1,012,000/(340²) + 7.5 ≈ -1.25
Read more about Instantaneous rate of change at; brainly.com/question/14666106
#SPJ1