1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artist 52 [7]
2 years ago
11

Radius of a semi circle

Mathematics
2 answers:
Ivahew [28]2 years ago
8 0
The area for semi circle is: (pi)(r^2)/2

A= 3.142 x (8.2)^2 / 2

A= 110.8 cm^2
bulgar [2K]2 years ago
6 0
A=3.142*r^2
Area of the circle= 3.142*8.2^2
=211.26
Because it’s a semicircle, divide by two.
211.26/2 = 105.6
You might be interested in
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
A mule deer can run one over four of a mile in 25 seconds. At this rate, which expression can be used to determine how fast a mu
kondor19780726 [428]

the answer is D. twenty-five seconds over one-fourth mile = 100 miles per hour.


3 0
3 years ago
At a local dealership 30% of cars are SUVs, 50% of the cars are painted white, and 15% are white and an SUV. If we randomly sele
alex41 [277]

Answer:

1/8, 0.0625 , or 6.25%

Step-by-step explanation:

50% of the cars are painted white.

1/2 * 1/2 = 1/4 * 1/4 = 1/8

Probability of A occuring 4 time(s) = 0.54 = 0.0625

Probability of A NOT occuring = (1 - 0.5)4 = 0.0625

Probability of A occuring = 1 - (1 - 0.5)4 = 0.9375

6 0
3 years ago
Help pls I don’t get it
Dmitriy789 [7]
68.40 divide 6 = 11.4

41.80 divided 4= 10.45
Plan B is lower fee per lesson
8 0
3 years ago
Read 2 more answers
What's the answer to this??
Evgen [1.6K]
The variable "x" equals 7
3 0
2 years ago
Other questions:
  • a 3 pound pork loin can be cut into 10 pork chops of equal weight. how many ounces are in each pork chop? please show your work
    11·2 answers
  • Sandra and her friend went to the candy store. Each of the purchased a bag of jelly beans. Sandra's bag weighed 1.25 pounds. Her
    14·2 answers
  • 8.50 as a rational number?
    7·1 answer
  • I get on a highway at 10:00 an and drive for 110 miles. I then get hungry and take an hour break to eat lunch; then I drive for
    5·1 answer
  • The box plot represents this data set. {16, 16, 16, 18, 18, 20, 24, 28, 30, 34} What value does the letter A represent on the bo
    10·2 answers
  • The formula below gives the area of a semi-circle, A, with a radius of r.
    8·1 answer
  • Y – 4 = –Two-thirds(x – 6) and passes through the point (−2, −2)?
    11·1 answer
  • A gambler claims that horses in a horse race that start closer to the rail have an advantage over horses that start further from
    9·1 answer
  • Help, answer again pls
    5·1 answer
  • What are the values of x and y?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!