A producer gets it's matter from it's surroundings. E.g a plant will get minerals and water from the ground through it's roots for photosynthesis.
Plants can also produce food by using the sun's light for photolysis of the water molecules. (Basically splitting the H20 into Hydrogen and O2 (oxygen gas). They release oxygen back into the air and combine the Hydrogen ion with carbon dioxide that they obtained from the air to create sugar (glucose) which is basically chemical food for the plants. This is the summed up process of photosynthesis.
Answer:
A balanced chemical equation follows law of conservation of mass. This law states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form. This means that total mass on the reactant side is equal to the total mass on the product side.
Answer:
Molar concentration of S₂ is 1.77×10⁻⁶M
Explanation:
For the reaction:
2H₂S(g) ⇄ 2H₂(g) + S₂(g)
The equilibirum constant, K, is defined as:
<em>(1)</em>
Concentrations in equilibirum are:
[H₂S] : 0,163/0.500L - X
[H₂] : 0,0500/0.500L + X
[S₂] : X
Replacing the concentrations and the equilibrium value in (1):
![K = \frac{[X][0.1+X]^2}{[0326-X]^2}](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BX%5D%5B0.1%2BX%5D%5E2%7D%7B%5B0326-X%5D%5E2%7D)
1.67x10⁻⁷ = X (X² + 0.2X + 0.01) / (X² -0.652X + 0.106)
1.67x10⁻⁷X² - 1.09x10⁻⁷X + 1.77x10⁻⁸ = X³ + 0.2X² + 0.01X
0 = X³ + 0.2X² + 0.01X - 1.77x10⁻⁸
Solving for X:
X = 1.77×10⁻⁶
As [S₂] = X, <em>molar concentration of S₂ is 1.77×10⁻⁶M</em>
I hope it helps!