I hope this helps answer some of your questions.
The solubility of Lead(II)Fluoride is 2.17 × 10⁻³ g/L in water at 25°C.
At a specific solution temperature, a solid salt compound can entirely dissolve in pure water up to a predetermined molar solubility limit. The dissociation stoichiometry ensures that the molarities of the constituent ions are proportionate to one another. The saturable nature of the solution causes them to also coexist in a solubility equilibrium with the solid component. At this temperature, a solubility product constant Ksp is calculated using the solubility product of their molarity values.
Lead (II) fluoride has the following solubility equilibrium for its saturated solution:
⇄ 
![K_s_p = [Pb^2^+][F^-]^2](https://tex.z-dn.net/?f=K_s_p%20%3D%20%5BPb%5E2%5E%2B%5D%5BF%5E-%5D%5E2)
This compound dissociates in a 1:2 ratio of ions. For the compound dissolved in pure water, the Ksp is expressed in terms of the molar solubility "x" as:


Here,
× 
4.1 × 10⁻⁸ = 4 x³
x³ = 1.025 × 10⁻⁸
x³ = 10.25 × 10⁻⁹
x = 2.17 × 10⁻³ g/L
Therefore, the solubility of Lead(II)Fluoride is 2.17 × 10⁻³ g/L.
Learn more about solubility here:
brainly.com/question/23946616
#SPJ4
Answer:
The pH of the solution is 1.66
Explanation:
Step 1: Data given
Number of moles HCl = 0.022 moles
Molar mass of HCl = 36.46 g/mol
Step 2: Calculate molarity of HCl
Molarity HCl = moles HCl / volume
Molarity HCl = 0.022 moles / 1 L = 0.022 M
[HCl] = [H+] = 0.022 M
Step 3: Calculate pH
pH = -log [H+]
pH = -log(0.022)
pH = 1.66
The pH of the solution is 1.66

1. we used <u>Symbol</u> to represent an element.
2. The chemical formula of a molecule shows the <u>number and kind of atoms contained in the molecule</u>.
3. K (potassium) is the atom among the given choices.
4. CO (carbon - monoxide) is the molecule among given choices.