Answer:
C
Explanation:
C3H8 + 502 ----> 3CO2 + 4H20.
Answer:
Explanation:
Assume that you have mixed 135 mL of 0.0147 mol·L⁻¹ NiCl₂ with 190 mL of 0.250 mol·L⁻¹ NH₃.
1. Moles of Ni²⁺

2. Moles of NH₃

3. Initial concentrations after mixing
(a) Total volume
V = 135 mL + 190 mL = 325 mL
(b) [Ni²⁺]

(c) [NH₃]

3. Equilibrium concentration of Ni²⁺
The reaction will reach the same equilibrium whether it approaches from the right or left.
Assume the reaction goes to completion.
Ni²⁺ + 6NH₃ ⇌ Ni(NH₃)₆²⁺
I/mol·L⁻¹: 6.106×10⁻³ 0.1462 0
C/mol·L⁻¹: -6.106×10⁻³ 0.1462-6×6.106×10⁻³ 0
E/mol·L⁻¹: 0 0.1095 6.106×10⁻³
Then we approach equilibrium from the right.
Ni²⁺ + 6NH₃ ⇌ Ni(NH₃)₆²⁺
I/mol·L⁻¹: 0 0.1095 6.106×10⁻³
C/mol·L⁻¹: +x +6x -x
E/mol·L⁻¹: x 0.1095+6x 6.106×10⁻³-x
![K_{\text{f}} = \dfrac{\text{[Ni(NH$_{3}$)$_{6}^{2+}$]}}{\text{[Ni$^{2+}$]}\text{[NH$_{3}$]}^{6}} = 2.0 \times 10^{8}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bf%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BNi%28NH%24_%7B3%7D%24%29%24_%7B6%7D%5E%7B2%2B%7D%24%5D%7D%7D%7B%5Ctext%7B%5BNi%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BNH%24_%7B3%7D%24%5D%7D%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D)
Kf is large, so x ≪ 6.106×10⁻³. Then
![K_{\text{f}} = \dfrac{\text{[Ni(NH$_{3}$)$_{6}^{2+}$]}}{\text{[Ni$^{2+}$]}\text{[NH$_{3}$]}^{6}} = 2.0 \times 10^{8}\\\\\dfrac{6.106 \times 10^{-3}}{x\times 0.1095^{6}} = 2.0 \times 10^{8}\\\\6.106 \times 10^{-3} = 2.0 \times 10^{8}\times 0.1095^{6}x= 345.1x\\x= \dfrac{6.106 \times 10^{-3}}{345.1} = 1.77 \times 10^{-5}\\\\\text{The concentration of Ni$^{2+}$ at equilibrium is $\large \boxed{\mathbf{1.77 \times 10^{-5}}\textbf{ mol/L}}$}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bf%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BNi%28NH%24_%7B3%7D%24%29%24_%7B6%7D%5E%7B2%2B%7D%24%5D%7D%7D%7B%5Ctext%7B%5BNi%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BNH%24_%7B3%7D%24%5D%7D%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5C%5C%5C%5C%5Cdfrac%7B6.106%20%5Ctimes%2010%5E%7B-3%7D%7D%7Bx%5Ctimes%200.1095%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5C%5C%5C%5C6.106%20%5Ctimes%2010%5E%7B-3%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5Ctimes%200.1095%5E%7B6%7Dx%3D%20345.1x%5C%5Cx%3D%20%5Cdfrac%7B6.106%20%5Ctimes%2010%5E%7B-3%7D%7D%7B345.1%7D%20%3D%201.77%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C%5Ctext%7BThe%20concentration%20of%20Ni%24%5E%7B2%2B%7D%24%20at%20equilibrium%20is%20%24%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.77%20%5Ctimes%2010%5E%7B-5%7D%7D%5Ctextbf%7B%20mol%2FL%7D%7D%24%7D)
Answer:
A. 0.2395 w/w %
B. 2394ppm
Explanation:
A. To find concentrationin percent by mass of the solution we need to calculate mass of glycerol and mass of water. The formula is:
Mass glycerol / Total mass * 100
<em>Mass glycerol:</em>
The solution is 2.6x10⁻²moles / L. As there is 1L of solution there are 2.6x10⁻² moles of glycerol. In mass (Using molar mass glycerol: 92.09g/mol):
2.6x10⁻² moles of glycerol * (92.09g / mol) = 2.394g glycerol
<em>Mass of water:</em>
998.9mL and density = 0.9982g/mL:
998.9mL * (0.9982g/mL) = 997.1g of water.
That means percent by mass is:
% by mass: 2.394g / (997.1g + 2.394g) * 100 = 0.2395 w/w %
B. Parts per million are mg of glycerol per L of solution. As in 1L there are 2.394g. In mg:
2.394g * (1000mg / 1g) = 2394mg:
Parts per million: 2394mg / L = 2394ppm
Answer:

Explanation:
In order to answer this question, we need to be familiar with the law of freezing point depression. The law generally states that mixing our solvent with some particular solute would decrease the freezing point of the solvent.
This may be expressed by the following relationship:

Here:
is the change in the freezing point of the solvent given its initial and final freezing point temperature values;
is the van 't Hoff factor (i = 1 for non-electrolyte solutes and i depends on the number of moles of ions released per mole of ionic salt);
is the freezing point depression constant for the solvent;
is molality of the solute, defined as a ratio between the moles of solute and the mass of solvent (in kilograms).
We're assuming that you meant 1.7-molal solution, then:

Given ethylene glycol, an organic non-electrolyte solute:

The freezing point depression constant:

Initial freezing point of pure water:

Rearrange the equation for the final freezing point and substitute the variables:

The answer to this question is A. Humidity.. because humitity causes steam