Answer:
![r = \sqrt[3]{\frac{3V}{4 \pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D)
Step-by-step explanation:
From the formula of volume of a sphere we have to isolate "r" on one side of the equation i.e. we have to make "r" the subject of the equation.
![V=\frac{4}{3} \pi r^{3}\\\\ \text{Multiplying both sides by 3/4 we get}\\\\\frac{3V}{4} = \pi r^{3}\\\\ \text{Dividing both sides by } \pi \\\\ \frac{3V}{4 \pi} = r^{3}\\\\\text{Takeing cube root of both sides}\\\\\sqrt[3]{\frac{3V}{4 \pi}} = r](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20r%5E%7B3%7D%5C%5C%5C%5C%20%5Ctext%7BMultiplying%20both%20sides%20by%203%2F4%20we%20get%7D%5C%5C%5C%5C%5Cfrac%7B3V%7D%7B4%7D%20%3D%20%5Cpi%20r%5E%7B3%7D%5C%5C%5C%5C%20%5Ctext%7BDividing%20both%20sides%20by%20%7D%20%5Cpi%20%5C%5C%5C%5C%20%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%20%3D%20r%5E%7B3%7D%5C%5C%5C%5C%5Ctext%7BTakeing%20cube%20root%20of%20both%20sides%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D%20%3D%20r)
Therefore:
![r = \sqrt[3]{\frac{3V}{4 \pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D)
Answer:
10 centimeters.
Step-by-step explanation:
First, we need to remember what's the formula to get the volume of a rectangular solid and a cube.
The volume of the first equals:
Volume = Length x Width x Height
While the volume of the cube is:
where a is the edge.
We are given the measures of the rectangular solid so we can calculate its volume:
cubic cms.
Now, we know that both the volume of the rectangular solid and the cube are the same so we will use this information to calculate the edge of the cube.
![1000=a^3 \\\sqrt[3]{1000} =\sqrt[3]{a^3} \\10=a](https://tex.z-dn.net/?f=1000%3Da%5E3%20%5C%5C%5Csqrt%5B3%5D%7B1000%7D%20%3D%5Csqrt%5B3%5D%7Ba%5E3%7D%20%5C%5C10%3Da)
Thus the length of an edge of the cube is 10 centimeters
Answer:

Step-by-step explanation:
Given

Required
Solve
First, convert 180lb to kg


-- to 1dp
Next, convert 12oz to kg


--- to 1 dp
So, the expression becomes:



Hence:
