Answer:
Um, where is the problem?
Step-by-step explanation:
Answer:x>2
Step-by-step explanation:
4x/4>8/4
2y+12 < 42
subtract 12 from both sides to isolate the 'y'
2y<30
since '2y' is multiplication, the opposite is division. divide by 2 to isolate the 'y'. doing so will flip the < sign to make it >.
y > 15
------------------------------------------------
She makes $15 an hour. Her employers take out $125 weekly. She gets a paycheck for $205 that week.
Add the $125 back in that her employer took out and you can find how much she earned that week, it's $330. Divide $330 by $15 to find that she worked a minimum of 22 hours that week.
15h-125=205
15h=330
h=22
plug 22 in to the equation 15h-125=205 to check your answer
------------------------------------------
I can't help you with the last one. Best of luck though man and god bless.
9514 1404 393
Answer:
4a. ∠V≅∠Y
4b. TU ≅ WX
5. No; no applicable postulate
6. see below
Step-by-step explanation:
<h3>4.</h3>
a. When you use the ASA postulate, you are claiming you have shown two angles and the side between them to be congruent. Here, you're given side TV and angle T are congruent to their counterparts, sides WY and angle W. The angle at the other end of segment TV is angle V. Its counterpart is the other end of segment WY from angle W. In order to use ASA, we must show ...
∠V≅∠Y
__
b. When you use the SAS postulate, you are claiming you have shown two sides and the angle between them are congruent. The angle T is between sides TV and TU. The angle congruent to that, ∠W, is between sides WY and WX. Then the missing congruence that must be shown is ...
TU ≅ WX
__
<h3>5.</h3>
The marked congruences are for two sides and a non-included angle. There is no SSA postulate for proving congruence. (In fact, there are two different possible triangles that have the given dimensions. This can be seen in the fact that the given angle is opposite the shortest of the given sides.)
"No, we cannot prove they are congruent because none of the five postulates or theorems can be used."
__
<h3>6.</h3>
The first statement/reason is always the list of "given" statements.
1. ∠A≅∠D, AC≅DC . . . . given
2. . . . . vertical angles are congruent
3. . . . . ASA postulate
4. . . . . CPCTC
<h3>I'll teach you how to solve 5k^3-8-4k^2+5k^2-2+3k^3</h3>
-----------------------------------------------------------------------
5k^3-8-4k^2+5k^2-2+3k^3
Group like terms:
5k^3+3k^3-4k^2+5k^2-8-2
Add similar elements:
5k^3+3k^3+k^2-8-2
Add similar elements:
8k^3+k^2-8-2
Subtract the numbers:
8k^3+k^2-10
Your Answer Is 8k^3+k^2-10
Plz mark me as brainliest :)