Answer:
Here's what I get
Explanation:
CH₃CH₂CH₂CH₂CH₂CH₃ — hexane
CH₂=CHCH₂CH₂CH₂CH₃ — hex-1-ene is the preferred IUPAC name (PIN). 1-Hexene is accepted
CH₃C≡CCH₃ — but-2-yne (PIN); 2-butyne is accepted
CH₃CH(CH₃)CH₂CH₂CH₃ — 2-methylpentane
CH₃CH₂CHCICH₂CH₃ — 3-chloropentane
The sea is called "dead" because its high salinity prevents macroscopic aquatic organisms, such as fish and aquatic plants, from living in it, though minuscule quantities of bacteria and microbial fungi are present. In times of flood, the salt content of the Dead Sea can drop from its usual 35% to 30% or lower.
Answer:
<h2>0.05 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>0.05 moles</h3>
Hope this helps you
B) It will accelerate to the right because 500 N> 300 N
The phosphate group of one nucleotide bonds covalently with the sugar molecule of the next nucleotide, and so on, forming a long polymer of nucleotide monomers. The sugar–phosphate groups line up in a “backbone” for each single strand of DNA, and the nucleotide bases stick out from this backbone. The carbon atoms of the five-carbon sugar are numbered clockwise from the oxygen as 1′, 2′, 3′, 4′, and 5′ (1′ is read as “one prime”). The phosphate group is attached to the 5′ carbon of one nucleotide and the 3′ carbon of the next nucleotide. In its natural state, each DNA molecule is actually composed of two single strands held together along their length with hydrogen bonds between the bases.