Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.
The answer is B. Each chlorine has three non-bonded pairs and one bonded pair of electrons.
I just took the test and it was correct! 5/5 :)
<span>The solution to the problem is as follows:
125/58.69 = 2.12 mol
</span>
Therefore, there are 2.12 moles of <span>nickel (Ni) atoms are in 125 g Ni.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
The answer to your question is: 17.26% of carbon
Explanation:
Data
CxHy = 0.2121 g
BaCO₃ = 0.6006 g
Molecular mass BaCO₃ = 137 + 12 + 48 = 197 g
Reaction
CO₂ + Ba(OH)₂ ⇒ BaCO₃ + H₂O
Process
1.- Find the amount of carbon in BaCO₃
197 g of BaCO₃ --------------- 12 g of Carbon
0.6006 g ---------------- x
x = (0.6006 x 12) / 197
x = 0.0366 g of carbon
2.- Calculate the percentage of carbon in the organic compound
0.2121 g of organic compound --------------- 100%
0.0366g -------------- x
x = (0.0366 x 100) / 0.2121
x = 17.26%
Answer:
you have to give us the product in order for us to know the limiting reactant.