Answer:
I think it is better if you read and shortly write my explanation
Explanation:
simple pendulum with no friction, mechanical energy is conserved. Total mechanical energy is a combination of kinetic energy and gravitational potential energy. As the pendulum swings back and forth, there is a constant exchange between kinetic energy and gravitational potential energy.
Answer: a) speed = 3.45 × 10^-2 m/s
b) speed = 1.38 × 10^-1 m/s
Explanation: shown in the attachment
C. The water cycle spreads water out evenly around the whole Earth
Answer:
a) 3-in. pipe
Explanation:
Given that
Fluid flow is in same amount in the same time it means that volume flow rate is same for the pipes
Volume flow rate
Q = A V
A=Area ,V=Velocity

If diameter d is more then the velocity will be less for same volume flow rate .We also Know that if pressure is more then the velocity will be less.
The second pipe 3 in diameter having more diameter then the velocity will be less but the pressure will be more.
That is why the 3 in diameter is having more pressure than 2 in diameter pipe.
Therefore the answer will be a.
a) 3-in diameter pipe
Answer:
Explanation:
Hello,
Let's get the data for this question before proceeding to solve the problems.
Mass of flywheel = 40kg
Speed of flywheel = 590rpm
Diameter = 75cm , radius = diameter/ 2 = 75 / 2 = 37.5cm.
Time = 30s = 0.5 min
During the power off, the flywheel made 230 complete revolutions.
∇θ = [(ω₂ + ω₁) / 2] × t
∇θ = [(590 + ω₂) / 2] × 0.5
But ∇θ = 230 revolutions
∇θ/t = (530 + ω₂) / 2
230 / 0.5 = (530 + ω₂) / 2
Solve for ω₂
460 = 295 + 0.5ω₂
ω₂ = 330rpm
a)
ω₂ = ω₁ + αt
but α = ?
α = (ω₂ - ω₁) / t
α = (330 - 590) / 0.5
α = -260 / 0.5
α = -520rev/min
b)
ω₂ = ω₁ + αt
0 = 590 +(-520)t
520t = 590
solve for t
t = 590 / 520
t = 1.13min
60 seconds = 1min
X seconds = 1.13min
x = (60 × 1.13) / 1
x = 68seconds
∇θ = [(ω₂ + ω₁) / 2] × t
∇θ = [(590 + 0) / 2] × 1.13
∇θ = 333.35 rev/min