1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
3 years ago
14

A key falls from a bridge that is 45 m above the water. the key falls straight down and lands in a model boat traveling at a con

stant velocity of 3.5 m/s. calculate the distance the boat was from the point of impact when the key was released.
Physics
1 answer:
erastova [34]3 years ago
7 0

Let the key is free falling, therefore from equation of motion

h = ut +\frac{1}{2}gt^2..

Take initial velocity, u=0, so

h = 0\times t + \frac{1}{2}g t^2= \frac{1}{2}gt^2.

h = 0\times t + \frac{1}{2}g t^2= \frac{1}{2}gt^2 \\\ t =\sqrt{\frac{2h}{g} }

As velocity moves with constant velocity of 3.5 m/s, therefore we can use formula

d= v \times t

From above substituting t,

d = v \times \sqrt{\frac{2h}{g} }.

Now substituting all the given values and g = 9.8 m/s^2, we get

d = 3.5 \ m/s \times \sqrt{\frac{2 \times 45 m}{9.8 m/s^2} } = 10.60 m.

Thus, the distance the boat was from the point of impact when the key was released is 10.60 m.

You might be interested in
The L-ft ladder has a uniform weight of W lb and rests against the smooth wall at B. θ = 60. If the coefficient of static fricti
Colt1911 [192]

This question is incomplete, the complete question;

The L-ft ladder has a uniform weight of W lb and rests against the smooth wall at B. θ = 60. If the coefficient of static friction at A is μ = 0.4.

Determine the magnitude of force at point A and determine if the ladder will slip. given the following; L = 10 FT, W = 76 lb

Answer:

- the magnitude of force at point A is 79.1033 lb

- since FA < FA_max; Ladder WILL NOT slip

Explanation:

Given that;

∑'MA = 0

⇒ NB [Lsin∅] - W[L/2.cos∅] = 0

NB = W / 2tan∅ -------let this be equation 1

∑Fx = 0

⇒ FA - NB = 0

FA = NB

therefore from equation 1

FA = NB = W / 2tan∅

we substitute in our values

FA = NB = 76 / 2tan(60°) = 21.9393 lb

Now ∑Fy = 0

NA - W = 0

NA = W = 76 lb

Net force at A will be

FA' = √( NA² + FA²)

= √( (W)² + (W / 2tan∅)²)

we substitute in our values

FA' = √( (76)² + (21.9393)²)

= √( 5776 + 481.3328)

= √ 6257.3328

FA' = 79.1033 lb

Therefore the magnitude of force at point A is 79.1033 lb

Now maximum possible frictional force at A

FA_max = μ × NA

so, FA_max = 0.4 × 76

FA_max = 30.4 lb

So by comparing, we can easily see that the actual friction force required for keeping the the ladder stationary i.e (FA) is less than the maximum possible friction available at point A.

Therefore since FA < FA_max; Ladder WILL NOT slip

5 0
2 years ago
How does a large star create the elements? at what element does the star stop making new elements?
Dahasolnce [82]
They are fused in the core of the star due to great pressures and temperatures.  They are made all the way through iron.  At that point the star dies.  If it is a really large star it will become a supernova when it dies, creating all of the elements beyond iron as well, but only in its death.  No star can create anything beyond iron in its life cycle
4 0
3 years ago
A white dwarf star has a density of about 1.0 x 10^9 kg/m3. If the earth were to suddenly become as dense as a white dwarf star,
GalinKa [24]

Answer:

R = 98304.75 m = 98.3 km

Explanation:

The density of an object is given as the ratio between the mass of that object and the volume occupied by that object.

Density = Mass/Volume

Now, it is given that the density of Earth has become:

Density = 1 x 10⁹ kg/m³

Mass = Mass of Earth (Constant) = 5.97 x 10²⁴ kg

Volume = 4/3πR³ (Volume of Sphere)

R = Radius of Earth = ?

Therefore,

1 x 10⁹ kg/m³ = (5.97 x 10²⁴ kg)/[4/3πR³]

4/3πR³ = (5.97 x 10²⁴ kg)/(1 x 10⁹ kg/m³)

R³ = (3/4)(5.97 x 10¹⁵ m³)/π

R = ∛[0.95 x 10¹⁵ m³]

<u>R = 98304.75 m = 98.3 km</u>

6 0
2 years ago
Rosný bod závisí od ?
WITCHER [35]

Answer:

what did u say and what language are you speaking in

8 0
2 years ago
What is the frequency of a sound wave with a wavelength of 0.04 meter in air? What type of wave is
Viktor [21]
8500 Hz and Longitudinal


Speed = frequency x wavelength

Speed of sound at 20 degrees Celsius is approximately 340 m/s
4 0
2 years ago
Read 2 more answers
Other questions:
  • A student is running at her top speed of 5.4 m/s to catch a bus, which is stopped at the bus stop. When the student is still a d
    13·1 answer
  • Find the fundamental frequency and the next three frequencies that could cause standing-wave patterns on a string that is 30.0 m
    9·1 answer
  • If the ball increases from 1 m/s to 2 m/s, by how much would<br> kinetic energy increase
    9·1 answer
  • A 5.0 V battery storing 43.0 kJ of energy supplies 1.5 A of current to a circuit. How much energy does the battery have left aft
    10·1 answer
  • What is the control group used for
    6·1 answer
  • I need help pls help me
    10·1 answer
  • I REALLY NEED HELP.....PLEASE SOMEONE!!!
    5·1 answer
  • How old is a bone if it still has 50% of its carbon-14 content?
    9·1 answer
  • Please I really need this !! Potassium loses electrons when it reacts with oxygen. Which statement is true of potassium in this
    14·2 answers
  • Engineers are investigating the properties of a material for use as a wrapping product. Three identical
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!