Answer:
This tells us that:
![A=\left[\begin{array}{ccc}5&7\\5&-8\\3&-9\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%267%5C%5C5%26-8%5C%5C3%26-9%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
So we are saying we have scalars, c and d, such that:
.
So we want to find a way to express this as:
Ax=b where x is the scalar vector,
.
So we can write this as:
![\left[\begin{array}{ccc}5&7\\5&-8\\3&-9\end{array}\right] \left[\begin{array}{ccc}c\\d\end{array}\right] =\left[\begin{array}{ccc}-16\\3\\-15\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%267%5C%5C5%26-8%5C%5C3%26-9%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dc%5C%5Cd%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-16%5C%5C3%5C%5C-15%5Cend%7Barray%7D%5Cright%5D)
Answer:
4.2 units
most likely answer choice B
Step-by-step explanation:
(1, 2) and (4, 5)
To find the distance between two points, we use the distance formula:

Let's plug in what we know.

Evaluate the parentheses.

Evaluate the exponents.

Add.

Evaluate the radical.
d = 4.24
Round to the nearest tenth.
d = 4.2 units
*note: The answer choice is 4.6. I'm not sure if that is a typo on someone's end, but the distance between these two points is exactly 4.24264068712 units.
Hope this helps!
No it is not correct the answer is 14!
Answer:
- (a) no
- (b) yes
- (c) no
- (d) no
Step-by-step explanation:
"Of the order x^2" means the dominant behavior matches that of x^2 as x gets large. For polynomial functions, the dominant behavior is that of the highest-degree term.
For other functions, the dominant behavior will typically be governed in some other way. Here, the rate of growth of the x·log(x) function is determined by log(x), which has decreasing slope as x increases.
Only answer selection B has a highest-degree term of x^2, so only that one exhibits O(x^2) behavior.
Answer:
4 tickets
Step-by-step explanation:
1 ticket is $3.25
2 ticket is $6.5
3 ticket is $9.75
4 ticket is $13
5 tickets is over and makes $16.25