Answer:
1.An initial observation is the measurement that you take before you start any process that might cause a change. When you compare your subsequent observations with the initial one, you will see whether any change has taken place, and you will be able to measure the change.
Explanation:
D ko po alam yung iba
Answer:
the second option is correct
Explanation:
maybe I think b is correct
Answer:
The mass of
4.6
×
10
24
atoms of silver is approximately 820 g.
Explanation:
In order to determine the mass of a given number of atoms of an element, identify the equalities between moles of the element and atoms of the element, and between moles of the element and its molar mass.
1
mole atoms Ag=6.022xx10
23
atoms Ag
Molar mass of Ag =#"107.87 g/mol"#
Multiply the given atoms of silver by
1
mol Ag
6.022
×
23
atoms Ag
. Then multiply times the molar mass of silver.
4.6
×
10
24
atoms Ag
×
1
mol Ag
6.022
×
10
23
atoms Ag
×
107.87
g Ag
1
mol Ag
=
820 g Ag
<span>A pulse with an amplitude of 3+ would be considered as increased.
Peripheral Pulse Assessment Grading System is measured in 0 - 3 Scale.
0 = absent
1+ = Weak/thready pulse
2+ Normal Pulse
3+ = Full, firm pulse.
from the above scale we can find that the 3+ reading shows that the pulse is increased.</span>
Answer:
Option D. Al is above H on the activity series.
Explanation:
The equation for the reaction is given below:
2Al + 6HBr —> 2AlBr₃ + 3H₂
The activity series gives us a background understanding of the reactivity of elements i.e how elements displace other elements when present in solution.
From the activity series of metals, we understood that metal higher in the series will displace those lower in the series.
Considering the equation given above, Al is higher than H in the activity series. Thus, the reaction will proceed as illustrated by the equation.
Therefore, we can conclude that the reaction will only occur if Al is higher than H in the activity series.