Answer:
Mass is lost due to the conversion of mass to energy
Explanation:
The question is not complete, the complete question is given as:
⇒ 
total mass equals 236.053 u total mass equals 235.868 u
Which statement explains the energy term in this reaction? (1) Mass is gained due to the conversion of mass to energy. (2) Mass is gained due to the conversion of energy to mass. (3) Mass is lost due to the conversion of mass to energy. (4) Mass is lost due to the conversion of energy to mass.
Answer: From Einstein’s equation E = mc², when a radioisotope element undergoes fission or fusion in a nuclear reaction, it loses a tiny amount of mass.This mass lost is converted to energy.
The law of conservation of energy holds for this type of reaction (i.e the sum of mass and energy is remains the same in a nuclear reaction). Mass changes to energy, but the total amount of mass and energy combined remains the same before and after a nuclear reaction.
From the reaction above, the total decrease in mass = 236.053 - 235.868 = 0.185 u
Answer:
is larger
Explanation:
, where
is the acid dissociation constant.
For a monoprotic acid e.g. HA,
and ![\frac{[A^{-}]}{[HA]}=\frac{K_{a}}{[H^{+}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D%3D%5Cfrac%7BK_%7Ba%7D%7D%7B%5BH%5E%7B%2B%7D%5D%7D)
So, clearly, higher the
value , lower will the the
In this mixture, at equilibrium,
will be constant.
of HF is grater than
of HCN
Hence, ![(\frac{F^{-}}{[HF]}=\frac{K_{a}(HF)}{[H^{+}]})>(\frac{CN^{-}}{[HCN]}=\frac{K_{a}(HCN)}{[H^{+}]})](https://tex.z-dn.net/?f=%28%5Cfrac%7BF%5E%7B-%7D%7D%7B%5BHF%5D%7D%3D%5Cfrac%7BK_%7Ba%7D%28HF%29%7D%7B%5BH%5E%7B%2B%7D%5D%7D%29%3E%28%5Cfrac%7BCN%5E%7B-%7D%7D%7B%5BHCN%5D%7D%3D%5Cfrac%7BK_%7Ba%7D%28HCN%29%7D%7B%5BH%5E%7B%2B%7D%5D%7D%29)
So,
is larger
Answer:

Explanation:
To find the weight (W) of the pond contents first we need to use the following equation:
(1)
Where m the mass and g is the gravity
Also, we have that the mass is:
(2)
Where ρ is the density and V the volume
We cand calculate the volume as follows:
(3)
Where L is the length, w is the wide and d is the depth
By entering equation (2) and (3) into (1) we have:

Therefore, the weight of the pond is 6.65x10⁶ lbf.
I hope it helps you!