<h2>Steps:</h2>
- Remember that Density = mass/volume, or D = m/v
So firstly, we have to find the volume of the rock. To do this, we need to subtract the volume of water A from the volume of the water B. In this case:
- Water A = 30 mL
- Water B = 40 mL
- 40 mL - 30 mL = 10 mL
<u>The volume of the rock is 10 mL.</u>
Now that we have the volume, we can plug that and the density of the rock into the density equation to solve for the mass.

For this, multiply both sides by 10:

<h2>Answer:</h2>
<u>Rounding to the tenths place, the mass of the rock is 36.8 g, or C.</u>
<span>1. The value of x if the rate doubles when [A] is doubled is that </span><span>x = 1
</span><span>2. Then if the rate quadruples when [A] is doubled is that x= 2
Since x=1 when the rate doubles, so if it quadruples, it will be times 2.
So the solution to this is 1 times 2= 2
x=2</span>
Answer: Chyme
Explain: Chyme passes from the stomach to the small intestine. Further protein digestion takes place in the small intestine.
brainly.com/question/24206619
C₁₂H₂₂O₁₁
1 )
Molar mass = 12 x 12 + 22 x 1 + 11 x 16
= 144 + 22 + 176
= 342 g
2 )
100 mL of 1.0 M will contain 1.0 x0.100 = .1 mole of sucrose
0.1 mole of sucrose = 0.1 x 342 g = 34.2 g of sucrose.
So , mass of sucrose required is 34.2 g .
3 )
100 mL of .5 M sucrose = .100 x .5 mole of sucrose
= .05 mole of sucrose
.05 mole of sucrose = .05 x 342 g = 17.1 g of sucrose .
So , mass of sucrose required is 17.1 g .