I think the light will blind 27 times
Answer:
<u>The</u><u> </u><u>requ</u><u>ired</u><u> </u><u>num</u><u>ber</u><u> is</u><u> </u><u>7</u><u>0</u><u>.</u>
Step-by-step explanation:
let the no. be 10y + x where x is unit digit and y is ten's digit.
given , sum of the digit is 7
x + y = 7 ...(1)
also , reversing the no. we get 10x + y ,where x is ten's digit and y is unit digit.
given reversed digit decreases the number by 63 .
so, 10y + x - ( 10x + y ) = 63
9y -9x = 63
( dividing both side by 9 )
y - x = 7 ....(2)
adding 1 and 2 [ refer attachment ]
so the required original number is
10y + x = 10×7+0 = 70
Answer:
x = -44/13
y = -65/13
Step-by-step explanation:
Using matrix form means using the crammers rule
The matrix form of the expression is written as;
![\left[\begin{array}{ccc}8&5\\-1&1\\\end{array}\right] \left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}9\\7\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%265%5C%5C-1%261%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%5C%5C7%5C%5C%5Cend%7Barray%7D%5Cright%5D)
AX = B
taking the determinant of A;
|A| = 8(1) - 5(-1)
|A| = 8 + 5
|A| = 13
After replacing the first row with the column matrix;
![A_x =\left[\begin{array}{ccc}9&5\\7&-1\\\end{array}\right]](https://tex.z-dn.net/?f=A_x%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%265%5C%5C7%26-1%5C%5C%5Cend%7Barray%7D%5Cright%5D)
|Ax| = 9(-1)-5(7)
||Ax| = -9 - 35
|Ax| = -44
x = |Ax|/|A|
x = -44/13
similarly for y
![A_x =\left[\begin{array}{ccc}8&9\\-1&7\\\end{array}\right]](https://tex.z-dn.net/?f=A_x%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%269%5C%5C-1%267%5C%5C%5Cend%7Barray%7D%5Cright%5D)
|Ay| = 8(7)+9
|Ay| = 56+9
|Ay| = 65
y = |Ay|/|A|
y = -65/13
Answer:
it 8
Step-by-step explanation:
4^3 is 64
2^3 is 8
64/8 is 8
Answer:
y = (6/11)x + 13/11
Step-by-step explanation:
y = mx + c
m = (-1-5)/(-4-7) = -6/-11 = 6/11
y = (6/11)x + c
When x = 7, y = 5
5 = (6/11)(7) + c
5 = 42/11 + c
c = 5 - 42/11
c = 13/11
y = (6/11)x + 13/11
11y = 6x + 13