Answer:
See explanation
Step-by-step explanation:
1. R is the set of all integers with absolute value less than 10, thus

2. A is its subset containing all natural numbers less than 10, thus

3. B is the set of all integer solutions of inequality 2x+5<9 that are less than 10 by absolute value (and therefore, it is also a subset of R). First, solve the inequality:

Thus,

See the diagram in attached diagram.
Note that

Answer: 2.25
Divide the corresponding values. You'll divide figure 2's length over figure 1's corresponding length. So 18/8 = 2.25
This means each side of figure 2 is 2.25 times larger than the corresponding side for figure 1
Answer:
a) Find the common ratio of this sequence.
Answer: -0.82
b) Find the sum to infinity of this sequence.
Answer: 2.2
Step-by-step explanation:
nth term in geometric series is given by ![4\ th \ term = ar^n-1\\-2.196 = 4r^{4-1} \\-2.196/4 = r^{3} \\r = \sqrt[3]{0.549} \\r = 0.82](https://tex.z-dn.net/?f=4%5C%20th%20%5C%20term%20%3D%20ar%5En-1%5C%5C-2.196%20%3D%204r%5E%7B4-1%7D%20%5C%5C-2.196%2F4%20%3D%20r%5E%7B3%7D%20%5C%5Cr%20%3D%20%5Csqrt%5B3%5D%7B0.549%7D%20%5C%5Cr%20%3D%200.82)
where
a is the first term
r is the common ratio and
n is the nth term
_________________________________
given
a = 4
4th term = -2.196
let
common ratio of this sequence. be r
![4\ th \ term = ar^n-1\\-2.196 = 4r^{4-1} \\-2.196/4 = r^{3} \\r = \sqrt[3]{-0.549} \\r = -0.82](https://tex.z-dn.net/?f=4%5C%20th%20%5C%20term%20%3D%20ar%5En-1%5C%5C-2.196%20%3D%204r%5E%7B4-1%7D%20%5C%5C-2.196%2F4%20%3D%20r%5E%7B3%7D%20%5C%5Cr%20%3D%20%5Csqrt%5B3%5D%7B-0.549%7D%20%5C%5Cr%20%3D%20-0.82)
a) Find the common ratio of this sequence.
answer: -0.82
sum of infinity of geometric sequence is given by = a/(1-r)
thus,
sum to infinity of this sequence = 4/(1-(-0.82) = 4/1.82 = 2.2
Answer:
B). 3 1/2(-2) = -7
Step-by-step explanation:
Let's evaluate the expression so as to be able to get the right estimate.
3 4/7 (-2 1/12)
=3 4/7 (-25/12)
= 25/7 * -25/12
= 25/7 * -25/12
= -625/84
= -7 37/84
Approximately it's equal to ,-7