Answer:
The variance in weight is statistically the same among Javier's and Linda's rats
The null hypothesis will be accepted because the P-value (0.53 ) > ∝ ( level of significance )
Step-by-step explanation:
considering the null hypothesis that there is no difference between the weights of the rats, we will test the weight gain of the rats at 10% significance level with the use of Ti-83 calculator
The results from the One- way ANOVA ( Numerator )
with the use of Ti-83 calculator
F = .66853
p = .53054
Factor
df = 2 ( degree of freedom )
SS = 23.212
MS = 11.606
Results from One-way Anova ( denominator )
Ms = 11.606
Error
df = 12 ( degree of freedom )
SS = 208.324
MS = 17.3603
Sxp = 4.16657
where : test statistic = 0.6685
p-value = 0.53
level of significance ( ∝ ) = 0.10
The null hypothesis will be accepted because the P-value (0.53 ) > ∝
where Null hypothesis H0 = ∪1 = ∪2 = ∪3
hence The variance in weight is statistically the same among Javier's and Linda's rats
The function is constant between x= -2 and x= 1.
Notice that flat line, with zero slope?
Anna:
Because the principal amount deposited by Anna is compounded by 6% every year, the growth is exponential.
Answer: D. Brian and Kendra
。☆✼★ ━━━━━━━━━━━━━━ ☾
Find the multiplier:
1 - (30/100) = 0.7
Multiply the price by this:
99.50 x 0.7 = 69.65.
You would pay $69.65
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾