Answer:
<h2>64.4 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
mass = 9.2 kg
acceleration = 7 m/s²
We have
force = 9.2 × 7 = 64.4
We have the final answer as
<h3>64.4 N</h3>
Hope this helps you
Answer:
<em>The flux through the sphere will remain the same, and the magnitude of the electric field will increase by four times.</em>
Explanation:
The electric flux is the number of electric field, passing through a given area. It is proportional to the electric field strength and the area through which this field passes.
If the radius of the sphere is halved, the area of the sphere will reduce by square of the reduction, which will be four times. The electric field lines will become closer together, or technically increase by a fourth of its initial value. The resultant effect is that the electric flux will remain the same.
If originally,
Φ = EA cos∅
where Φ is the electric flux through the sphere
E is the electric field on the sphere
A is the area of the sphere.
If the area of the sphere is reduced to half, then,
the area reduces to A/4,
and the electric field increases to be 4E on the sphere.
The flux now becomes
Φ = 4E x A/4 cos∅
which reduces to
Φ = EA cos∅
which is the initial electric flux on the sphere.
The effective temperature of a star is relative to the
fourth root of the luminosity and is contrariwise proportional to the square
root of the radius.
L = k R² T⁴
If the radius remains continuous, while the luminosity doubles, the temperature
must increase by a factor of the fourth root of two.
If L → 2L, then T → 1.189207115 T
So the answer is approximately 1.19 times.
Answer:
c. Clockwise
Explanation:
As per FARADAY's the rate of change in magnetic flux linked with a coil will induce EMF in the coil and this will result the induce current in the coil.
Here we know that the direction of induced current in the closed loop is in such a way that the magnetic flux due to induced current always oppose the flux due to which it is induced
So we can say that if the flux linked with the coil will increase with time then flux of induced current will be in opposite direction to oppose the increasing flux.
So here when magnetic field becomes stronger then the induced current is in such a way that will always oppose the increasing flux of magnetic field
So we will say that correct answer will be
c. Clockwise