1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
3 years ago
10

What force does it take to accelerate a 9.2 kg object 7.0 m/s^2?

Physics
1 answer:
Ulleksa [173]3 years ago
5 0

Answer:

<h2>64.4 N</h2>

Explanation:

The force acting on an object given it's mass and acceleration can be found by using the formula

force = mass × acceleration

From the question

mass = 9.2 kg

acceleration = 7 m/s²

We have

force = 9.2 × 7 = 64.4

We have the final answer as

<h3>64.4 N</h3>

Hope this helps you

You might be interested in
In an "atom smasher," two particles collide head on at relativistic speeds. If the velocity of the first particle is 0.741c to t
USPshnik [31]

Answer:

W_x = 0.9156\ c

Explanation:

given,

velocity of particle 1 = 0.741 c to left

velocity of second particle = 0.543 c to right

relative velocity between the particle = ?

for the relative velocity calculation we have formula

W_x = \dfrac{|u_x - v_x|}{1-\dfrac{u_xv_x}{c^2}}

u_x = 0.543 c

v_x = - 0.741 c

W_x = \dfrac{0.543 c - (-0.741 c)}{1-\dfrac{(0.543 c)(-0.741 c)}{c^2}}

W_x = \dfrac{0.543 c +0.741 c)}{1+\dfrac{(0.543)(0.741)c^2}{c^2}}

W_x = \dfrac{1.284c}{1+0.402363}

W_x = 0.9156\ c

Relative velocity of the particle is W_x = 0.9156\ c

5 0
3 years ago
Can sumbody help me wit dis
stepladder [879]
C, exothermic reaction. These types of reaction releases heat so that you can heat up your ready-to-eat meals.
3 0
3 years ago
What type of heat transfer is happening when the sun warms your face
Talja [164]
Answer:it might be radiation


Explanation:
7 0
3 years ago
Read 2 more answers
Consider two thin, coaxial, coplanar, uniformly charged rings with radii a and b푏 (a
Wittaler [7]

Answer:

electric potential, V = -q(a²- b²)/8π∈₀r³

Explanation:

Question (in proper order)

Consider two thin coaxial, coplanar, uniformly charged rings with radii a and b (b < a) and charges q and -q, respectively. Determine the potential at large distances from the rings

<em>consider the attached diagram below</em>

the electric potential at point p, distance r from the center of the outer charged ring with radius a is as given below

Va = q/4π∈₀ [1/(a² + b²)¹/²]

Va = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} }

Also

the electric potential at point p, distance r from the center of the inner charged ring with radius b is

Vb = \frac{-q}{4\pi e0} * \frac{1}{(b^{2} + r^{2} )^{1/2} }

Sum of the potential at point p is

V = Va + Vb

that is

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } + \frac{-q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * [\frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{1}{(b^{2} + r^{2} )^{1/2} }]

the expression below can be written as the equivalent

\frac{1}{(a^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + a^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} }

likewise,

\frac{1}{(b^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + b^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }

hence,

V = \frac{q}{4\pi e0} * [\frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

1/r is common to both equation

hence, we have it out and joined to the 4π∈₀ denominator that is outside

V = \frac{q}{4\pi e0 r} * [\frac{1}{{(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

by reciprocal rule

1/a² = a⁻²

V = \frac{q}{4\pi e0 r} * [{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} - {(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2}]

by binomial expansion of fractional powers

where (1+a)^{n} =1+na+\frac{n(n-1)a^{2} }{2!}+ \frac{n(n-1)(n-2)a^{3}}{3!}+...

if we expand the expression we have the equivalent as shown

{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} = (1-\frac{a^{2} }{2r^{2} } )

also,

{(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2} = (1-\frac{b^{2} }{2r^{2} } )

the above equation becomes

V = \frac{q}{4\pi e0 r} * [((1-\frac{a^{2} }{2r^{2} } ) - (1-\frac{b^{2} }{2r^{2} } )]

V = \frac{q}{4\pi e0 r} * [1-\frac{a^{2} }{2r^{2} } - 1+\frac{b^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * [-\frac{a^{2} }{2r^{2} } +\frac{b^{2} }{2r^{2} }]\\\\V = \frac{q}{4\pi e0 r} * [\frac{b^{2} }{2r^{2} } -\frac{a^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * \frac{1}{2r^{2} } *(b^{2} -a^{2} )

V = \frac{q}{8\pi e0 r^{3} } * (b^{2} -a^{2} )

Answer

V = \frac{q (b^{2} -a^{2} )}{8\pi e0 r^{3} }

OR

V = \frac{-q (a^{2} -b^{2} )}{8\pi e0 r^{3} }

8 0
3 years ago
You are observing the radiation from a distant active galaxy and you notice that the amplitude of the signal varies in strength
GREYUIT [131]

Answer:

Period of the signal.

Explanation:

So, this question is all about a concept in physics or astronomy which is called or known as Radiation Astronomy and Galactic Nuclei that are active. This concept talks most about Quasars; a powerful radiating object which derives its power from black holes.

When You take a look at Quasars, we get the to know that the more you think you can see, the more they move away from us.

Thus, when "You are observing the radiation from a distant active galaxy and you notice that the amplitude of the signal varies in strength regularly over a certain period. The maximum possible size for the source of this radiation can now be calculated from the "PERIOD OF THE SIGNAL.

NB: not the amplitude but the period.

7 0
3 years ago
Other questions:
  • As ocean waves approach shore, their velocity decreases. How does a decrease in velocity affect the frequency and wavelength of
    13·2 answers
  • A 0.142 kg remote control 24.0 cm long rests on a table, as shown in the figure(Figure 1) , with a length L overhanging its edge
    13·1 answer
  • A zinc atom loses 3electron to become a zinc oin
    15·1 answer
  • Kinetic energy: energy of motion. this means the ________ of objects with mass and velocity
    14·1 answer
  • What is the formula for moment in physics
    12·2 answers
  • Using the diagrams below, choose the Free Body Diagram that represents the following scenario.
    14·1 answer
  • Which physical property of the gas molecules gives the measurement of temperature​
    13·2 answers
  • The potential energy for a mass on a spring is proportional to the square of which of these quantities?
    7·1 answer
  • The earth’s gravity pulls with a force of 10N on each kilogram of an object mass calculate the weight of a 15kg sack of potatoes
    7·1 answer
  • Two charged particles are a distance of 1.72 m from each other. One of the particles has a charge of 7.03 nC, and the other has
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!