Answer:
The force of gravity
Explanation:
Gravity was studied, by early scientists such as Copernicus and others, Galileo was the first to ensure that planets moved according to a physical equation that depended on a force that caused celestial bodies to move and interact with each other. But years later Newton based on studies conducted deciphering what Galileo assumed, he was able to find the equation of the force of gravity in any body in the universe. This equation depends on the masses of the two interacting bodies, the distance between them and a constant, which I call universal gravitation constant.

Fg = gravity force [N]
G = universal gravitation constant = 6.67*10^(-11) [N*m^2/kg^2]
m1 = mass of the 1st body [kg]
m2 = mass of the 2nd body [kg]
r = distance between the bodies [meters]
Answer:
A: ≤ means less than OR equal to. < only means less than
B: 9
Explanation:
A: Because it would equal 19, and 19 is EQUAL than 19. 4(5) - 1 would equal 19, which is equal to 19, and not less than. ≤ means less than or equal to. < means less than. So its not true.
B: 47 - 2, 45. Then 5 x 9 equals 45. So 5 x 9 equals 45, then add 2 would equal 47.
Hope this helps <3
This question requires the use of the equation of motion:
v = u + at [v is final velocity (0), u is initial velocity (24), a is acceleration, t is time (13)]
to calculate the acceleration. This can then be multiplied by the mass of the plane to obtain the net force via:
F = ma (F is force, m is mass, a is acceleration)
First, we calculate the acceleration:
0 = 24 + 13(a)
a = -24/13 m/s^2
The force is then:
F = 90000 * (-24/13)
F = -1.66*10^5 Newtons
The negative sign indicates that the force and acceleration are in the opposite direction as the velocity (since we took velocity to be positive)
Answer:
the potential energy a massive object has in relation to another massive object due to gravity
Answer: distance d = 4.73e10m
Explanation: Suppose the charge on the black hole is 5740 C which is a positive charge.
Using electric potential V formula:
V = kq / d
Where K = 9.05×10^9Nm^2/C
And e = 1.6×10^-19C
But you don't need to substitute it.
1090 V = 8.99e9N·m²/C² * 5740C /d
Make d the subject of formula
d = 4.73e10 m