Answer:
The mass of tin is 164 grams
Explanation:
Step 1: Data given
Specific heat heat of tin = 0.222 J/g°C
The initial temeprature of tin = 80.0 °C
Mass of water = 100.0 grams
The specific heat of water = 4.184 J/g°C
Initial temperature = 30.0 °C
The final temperature = 34.0 °C
Step 2: Calculate the mass of tin
Heat lost = heat gained
Qlost = -Qgained
Qtin = -Qwater
Q = m*c*ΔT
m(tin)*c(tin)*ΔT(tin) = -m(water)*c(water)*ΔT(water)
⇒with m(tin) = the mass of tin = TO BE DETERMINED
⇒with c(tin) = the specific heat of tin = 0.222J/g°C
⇒with ΔT(tin) = the change of temperature of tin = T2 - T1 = 34.0°C - 80.0°C = -46.0°C
⇒with m(water) = the mass of water = 100.0 grams
⇒with c(water) = the specific heat of water = 4.184 J/g°C
⇒with ΔT(water) = the change of temperature of water = T2 - T1 = 34.0° C - 30.0 °C = 4.0 °C
m(tin) * 0.222 J/g°C * -46.0 °C = -100.0g* 4.184 J/g°C * 4.0 °C
m(tin) = 163.9 grams ≈ 164 grams
The mass of tin is 164 grams
First: enzymes
Second: small intestine
third: waste
<span>2 * 22.4 = 44.8 liters (if using pre 1982 standard)
2 * 22.7 = 45.4 liters (if using 1982 and later standard)
First, let's determine how many moles of F2 we have.
Atomic weight fluorine = 18.998403
Molar mass F2 = 2 * 18.998403 = 37.996806 g/mol
Moles F2 = 76 g / 37.996806 g/mol = 2.000168119 mol
Now we have a minor problem. What definition of STP are you using?
Up until 1982,
STP was defined as 0°C and 1 atmosphere (101.325 kPa)
From 1982 and later,
STP was defined as 0°C and 100 kPa
Because of the difference in pressure between the two different definitions of STP, the molar volume of a gas is 22.414 liter/mol using the pre-1982 definition and 22.711 liter/mol using the 1982 and later definition. So you get to choose which of the following 2 answers.
2 * 22.4 = 44.8 liters (if using pre 1982 standard)
2 * 22.7 = 45.4 liters (if using 1982 and later standard)
Unfortunately there's still a large number of text books in use using the standard that should have been obsolete 35 years ago.</span>