<em>Note:</em><em> You missed to add some of the details of the question.
</em>
<em>Hence, I am solving your concept based on an assumed graph which I have attached. It would anyways clear your concept.</em>
<em></em>
Answer:
Please check the explanation.
Step-by-step explanation:
Given the right angled-triangle ABC as shown in the attached diagram
From the triangle:
Ф= ∠C = 30°
AB = 6 units
BC = y
tan Ф = opp ÷ adjacent
The opposite of ∠C = 30° is the length '6'.
The adjacent of ∠C = 30° is the length 'y'.
As Ф= ∠C = 30°
so
tan Ф = opp ÷ adjacent
tan 30 = 5 ÷ y
1 ÷ √3 = 5 ÷ y
y = 8.7 units
Therefore, the length of the unknown side length 'y' is 8.7 units.
If you divided 28 by 2 you will get 14 then times that by 5 and you will get 70 that is how much 5 will be
The standard form for a parabola is (x - h)2 = 4p (y - k), where the focus is (h, k + p) and the directrix is y = k - p. If the parabola is rotated so that its vertex is (h,k) and its axis of symmetry is parallel to the x-axis, it has an equation of (y - k)2 = 4p (x - h), where the focus is (h + p, k) and the directrix (d)
is x = h - p.
So directrix is: y = k - p and the focus is at:
(h, k+p)
Since our focus is: (1, 3) and directrix is: y = 1,
thus h = 1, k+p = 3, and k-p = 1
Therefore k = 3-p, 3-p-p = 1, k = 3-p = 3-1 = 2
3-2p = 1, -2p = -3+1, -2p = -2, p = 1
Now we plug p, k, & h into standard form:
(x - h)2 = 4p (y - k)
y = 1/4 (x-1)^2 + 2
Answer:
f(2)=6
Step-by-step explanation:
f(x) = |x – 5| + 3 and find f(2). We plug in 2 for x
f(2) = |2 – 5| + 3
f(2) = |-3| + 3 absolute value makes the number inside positive
f(2)= 3+3
f(2)= 6