Answer:
.
Step-by-step explanation:
The equation of a circle of radius
centered at
is:
.
.
Differentiate implicitly with respect to
to find the slope of tangents to this circle.
![\displaystyle \frac{d}{dx}[x^{2} + y^{2}] = \frac{d}{dx}[25]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%7B2%7D%20%2B%20y%5E%7B2%7D%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B25%5D)
.
Apply the power rule and the chain rule. Treat
as a function of
,
.
.
.
That is:
.
Solve this equation for
:
.
The slope of the tangent to this circle at point
will thus equal
.
Apply the slope-point of a line in a cartesian plane:
, where
is the gradient of this line, and
are the coordinates of a point on that line.
For the tangent line in this question:
,
.
The equation of this tangent line will thus be:
.
That simplifies to
.
What do you need help with on it?
Hello :
the the discriminant : 3x² + 7x - 2 = 0 is : (7)²-4(3)(-2) =49+24=73
two real roots
Answer:
she plotted (8,5)
Step-by-step explanation:
the formula of that is (x,y). you would need to go 8 to the right and 5 units up. sophie mixed up the values.