Answer:
74.4 m³
Step-by-step explanation:
The volume (V) of the prism is calculated as
V = area of triangular base × length
area of triangle = 0.5 × 5 × 4.8 = 12 m², thus
V = 12 × 6.2 = 74.4 m³
You need to specify the statement needed to use the equation. Thank you. I will then answer it if needed.
Answer:
20%
Step-by-step explanation:
2.5 min =(60×2.5)sec=150 sec
30sec to 150sec=30×100/150=20%
![\bf f(x)=y=2x+sin(x) \\\\\\ inverse\implies x=2y+sin(y)\leftarrow f^{-1}(x)\leftarrow g(x) \\\\\\ \textit{now, the "y" in the inverse, is really just g(x)} \\\\\\ \textit{so, we can write it as }x=2g(x)+sin[g(x)]\\\\ -----------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3Dy%3D2x%2Bsin%28x%29%0A%5C%5C%5C%5C%5C%5C%0Ainverse%5Cimplies%20x%3D2y%2Bsin%28y%29%5Cleftarrow%20f%5E%7B-1%7D%28x%29%5Cleftarrow%20g%28x%29%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bnow%2C%20the%20%22y%22%20in%20the%20inverse%2C%20is%20really%20just%20g%28x%29%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bso%2C%20we%20can%20write%20it%20as%20%7Dx%3D2g%28x%29%2Bsin%5Bg%28x%29%5D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C)
![\bf \textit{let's use implicit differentiation}\\\\ 1=2\cfrac{dg(x)}{dx}+cos[g(x)]\cdot \cfrac{dg(x)}{dx}\impliedby \textit{common factor} \\\\\\ 1=\cfrac{dg(x)}{dx}[2+cos[g(x)]]\implies \cfrac{1}{[2+cos[g(x)]]}=\cfrac{dg(x)}{dx}=g'(x)\\\\ -----------------------------\\\\ g'(2)=\cfrac{1}{2+cos[g(2)]}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Blet%27s%20use%20implicit%20differentiation%7D%5C%5C%5C%5C%0A1%3D2%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%2Bcos%5Bg%28x%29%5D%5Ccdot%20%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%5Cimpliedby%20%5Ctextit%7Bcommon%20factor%7D%0A%5C%5C%5C%5C%5C%5C%0A1%3D%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%5B2%2Bcos%5Bg%28x%29%5D%5D%5Cimplies%20%5Ccfrac%7B1%7D%7B%5B2%2Bcos%5Bg%28x%29%5D%5D%7D%3D%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%3Dg%27%28x%29%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Ag%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5Bg%282%29%5D%7D)
now, if we just knew what g(2) is, we'd be golden, however, we dunno
BUT, recall, g(x) is the inverse of f(x), meaning, all domain for f(x) is really the range of g(x) and, the range for f(x), is the domain for g(x)
for inverse expressions, the domain and range is the same as the original, just switched over
so, g(2) = some range value
that means if we use that value in f(x), f( some range value) = 2
so... in short, instead of getting the range from g(2), let's get the domain of f(x) IF the range is 2
thus 2 = 2x+sin(x)
![\bf 2=2x+sin(x)\implies 0=2x+sin(x)-2 \\\\\\ -----------------------------\\\\ g'(2)=\cfrac{1}{2+cos[g(2)]}\implies g'(2)=\cfrac{1}{2+cos[2x+sin(x)-2]}](https://tex.z-dn.net/?f=%5Cbf%202%3D2x%2Bsin%28x%29%5Cimplies%200%3D2x%2Bsin%28x%29-2%0A%5C%5C%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Ag%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5Bg%282%29%5D%7D%5Cimplies%20g%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5B2x%2Bsin%28x%29-2%5D%7D)
hmmm I was looking for some constant value... but hmm, not sure there is one, so I think that'd be it
Answer:
Regular Octagon
Step-by-step explanation:
There are only three regular shapes that tessellate – the square, the equilateral triangle, and the regular hexagon. All other regular shapes, like the regular pentagon and regular octagon, do not tessellate on their own.