Answer:
(x + 1)^2 + (y - 4)^2 = 8
Step-by-step explanation:
Midpoint of the diameter is the centre
So....Centre coordinates are ((-3+1)÷2 ; (2+6)÷2) = (-1;4)
Calculate the radius of the circle....
Radius = square root of [(-1+3)^2 + (4-2)^2]
;Radius = square root of 8
Then substitute the x-coordinate of the centre into the first slot....then the y-coordinate into the second slot and the radius(squared) into last slot of the equation......;
(x + 1)^2 + (y - 4)^2 = 8
part A)
![\bf \begin{array}{|c|cccccc|ll} \cline{1-7} x&8&27&64&125&&x\\ \cline{1-7} y&\stackrel{\sqrt[3]{8}}{2}&\stackrel{\sqrt[3]{27}}{3}&\stackrel{\sqrt[3]{64}}{4}&\stackrel{\sqrt[3]{125}}{5}&&\sqrt[3]{x} \\ \cline{1-7} \end{array}~\hspace{10em}y = \sqrt[3]{x}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7B%7Cc%7Ccccccc%7Cll%7D%20%5Ccline%7B1-7%7D%20x%268%2627%2664%26125%26%26x%5C%5C%20%5Ccline%7B1-7%7D%20y%26%5Cstackrel%7B%5Csqrt%5B3%5D%7B8%7D%7D%7B2%7D%26%5Cstackrel%7B%5Csqrt%5B3%5D%7B27%7D%7D%7B3%7D%26%5Cstackrel%7B%5Csqrt%5B3%5D%7B64%7D%7D%7B4%7D%26%5Cstackrel%7B%5Csqrt%5B3%5D%7B125%7D%7D%7B5%7D%26%26%5Csqrt%5B3%5D%7Bx%7D%20%5C%5C%20%5Ccline%7B1-7%7D%20%5Cend%7Barray%7D~%5Chspace%7B10em%7Dy%20%3D%20%5Csqrt%5B3%5D%7Bx%7D)
part B)
f(x) = 10 + 20x
so if you rent the bike for a few hours that is
1 hr.............................10 + 20(1)
2 hrs..........................10 + 20(2)
3 hrs..........................10 + 20(3)
so the cost is really some fixed 10 + 20 bucks per hour, usually the 10 bucks is for some paperwork fee, so you go to the bike shop, and they'd say, ok is 10 bucks to set up a membership and 20 bucks per hour for using it, thereabouts.
f(100) = 10 + 20(100) => f(100) = 2010.
f(100), the cost of renting the bike for 100 hours.
Answer:
Step-by-step explanation:
3. function
4. not a function
5. function
6. not a function
7. function
8. not a function
What was his average speed rate on his way to Seattle?
Ans: 62mph
On which part of his trip did he average a faster speed rate?
Ans: When he returned home.
The answer is 4/9 or 0.44444