Answer:
84
59
Step-by-step explanation:
In other to have the same number of chayes in both rows and columns ;
If the Number of chairs per row = x ; then number of chairs per column = x
Then the total number of chairs needed = x * x = x²
Hence, if there are 5100 chairs ;
Number of chairs needed more ;
Take the square root of 5100 ;the round to the next whole number :
B.) For number of chairs to be removed ;
Take the square root of 5100 and round down to the whole number.
Hence,
A.) = √5100 = 71.414 = 72
72² - 5100 = 84
B.) 5100 = 71.414 = 71
5100 - 71² =
Answer:
The probability that a randomly selected depth is between 2.25 m and 5.00 m is 0.55.
Step-by-step explanation:
Let the random variable <em>X</em> denote the water depths.
As the variable water depths is continuous variable, the random variable <em>X</em> follows a continuous Uniform distribution with parameters <em>a</em> = 2.00 m and <em>b</em> = 7.00 m.
The probability density function of <em>X</em> is:

Compute the probability that a randomly selected depth is between 2.25 m and 5.00 m as follows:

![=\frac{1}{5.00}\int\limits^{5.00}_{2.25} {1} \, dx\\\\=0.20\times [x]^{5.00}_{2.25} \\\\=0.20\times (5.00-2.25)\\\\=0.55](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B5.00%7D%5Cint%5Climits%5E%7B5.00%7D_%7B2.25%7D%20%7B1%7D%20%5C%2C%20dx%5C%5C%5C%5C%3D0.20%5Ctimes%20%5Bx%5D%5E%7B5.00%7D_%7B2.25%7D%20%5C%5C%5C%5C%3D0.20%5Ctimes%20%285.00-2.25%29%5C%5C%5C%5C%3D0.55)
Thus, the probability that a randomly selected depth is between 2.25 m and 5.00 m is 0.55.
A)4/13 would be the larger number since if you were to try to add them, 4/13 = 40/130 and 3/10 = 39/130, 40/130 > 39/130
B) A rational number between them would be 39.5/130.
5 · 5 - 4 · 4 = 9 sorry if I'm wrong
the dots mean to multiply