Answer:
<u>Explanation</u>:
<u>Number of molecules for
</u>

Atomic mass of Na + H + C + 3(O) = 22.99 + 1.008 + 12.01 + 3 × 16.00 = 84.00 g/mol



<u>Number of molecules for for
</u>

= Atomic mass of 3(Na) + P + 4(O)
= 3(22.99) + 30.97 + 4(16.00) = 163.94 g/mol


Explanation:
first you get moles of silver
n=m/M
hence you add no of moles to this equation
c=nv
v=n/c
Answer : If we list the given chemicals according to their increasing oxidising ability then the order will be like this; 1 being the strongest and 6 being the weakest
1. K > 2. Ca >3. Ni> 4. Cu> 5. Ag> 6.Au
Explanation : Considering the reduction potential of each chemical species it will be easy to identify their oxidising capacity and differentiate accordingly;
More negative the value of reduction potential more is the ability of the chemical species to get oxidised.
Chemicals with their reduction potential is given below.
K has -2.92; Ca has -2.76; Ni has -0.23; Cu has 0.52; Ag has 1.50 and Au has 1.50.
Answer:
The correct answer is: <em>They each partially describe the bonding in a molecule.</em>
Explanation:
Some chemical molecules cannot be described completely by using only one Lewis structure. In these cases, we can describe the molecule by drawing 2 or more Lewis structures, and the structures are called <u>resonance structures</u>. The overall molecular structure is explained by all the resonance structures together. So, they each describe the bonding in the molecule only partially.
Answer:
1) 37100000
2) 330000000
Explanation:
1) 3.7 x 10^7 = 37100000
2) 3.30 x 10^8 = 330000000
(Hope this helps can I pls have brainlist (crown)☺️)