Answer:
the height (in feet) of the cliff is 121 ft
Explanation:
A stone hit the cliff with
speed, v = 88 ft/s
Acceleration, a= 32 ft/s^2
initial speed, u = 0 ft/s
height is h.
To solve this problem we will apply the linear motion kinematic equations, Equation of motion describes change in velocity, depending on the acceleration and the distance traveled
so, writing the formula of Equation of motion:
v^2 - u^2 = 2*a*h
substituting the appropriate values,
(88)^2 - 0 = 2*32* h
h=(88)^2 / 64
h= 121 ft
hence
the height (in feet) of the cliff is 121 ft
learn more about height of the cliff here:
<u>brainly.com/question/24130198</u>
<u />
#SPJ4
Complete Question
The complete question is shown on the first uploaded image
Answer:
a it is always zero
b 0
c 
Explanation:ss
Here the net charge is on the outer surface of the conductor thus this means that the net charge inside the conductor is zero
Generally the charge density of a conductor is dependent on the charge per unit area which implies that the charge density is dependent on the net charge so this means that the charge density inside the conductor is zero
Generally the direction of electric field this from the positive charge to the negative charge so from the question we can deduce that the negative charge is located on the surface of the conductor
So We can mathematically define the charge density on the surface of the electric field as
∮
Where E is the electric field
change in unit area
is the negative charge
is the permittivity of free space
So



Where
is the charge density
The answer is A. Urinary system
Answer and Explanation:
The computation of the shortest wavelength in the series is shown below:-

Where
represents wavelength
R represents Rydberg's constant
represents Final energy states
and
represents initial energy states
Now Substitute is

now we will put the values into the above formula


Now we will rewrite the answer in the term of 

So, the whole Paschen series is in the part of the spectrum.
Answer:
The magnitude of the angular acceleration ∝ =
}[/tex]
Explanation:
The angular acceleration ∝ is equal to the torque (radius multiplied by force) divided by the mass times the square of the radius. The magnitude of angular acceleration ∝ will have the equation above but we have to replace the mass in the equation by 2.8kg as stated.