-- We know that the y-component of acceleration is the derivative of the
y-component of velocity.
-- We know that the y-component of velocity is the derivative of the
y-component of position.
-- We're given the y-component of position as a function of time.
So, finding the velocity and acceleration is simply a matter of differentiating
the position function ... twice.
Now, the position function may look big and ugly in the picture. But with the
exception of 't' , everything else in the formula is constants, so we don't even
need any fancy processes of differentiation. The toughest part of this is going
to be trying to write it out, given the text-formatting capabilities of the wonderful
envelope-pushing website we're working on here.
From the picture . . . . . y (t) = (1/2) (a₀ - g) t² - (a₀ / 30t₀⁴ ) t⁶
First derivative . . . y' (t) = (a₀ - g) t - 6 (a₀ / 30t₀⁴ ) t⁵ = (a₀ - g) t - (a₀ / 5t₀⁴ ) t⁵
There's your velocity . . . /\ .
Second derivative . . . y'' (t) = (a₀ - g) - 5 (a₀ / 5t₀⁴ ) t⁴ = (a₀ - g) - (a₀ /t₀⁴ ) t⁴
and there's your acceleration . . . /\ .
That's the one you're supposed to graph.
a₀ is the acceleration due to the model rocket engine thrust
combined with the mass of the model rocket
'g' is the acceleration of gravity ... 9.8 m/s² or 32.2 ft/sec²
t₀ is how long the model rocket engine burns
Pick, or look up, some reasonable figures for a₀ and t₀
and you're in business.
The big name in model rocketry is Estes. Their website will give you
all the real numbers for thrust and burn-time of their engines, if you
want to follow it that far.
Answer:
statement B is true
Explanation:
since same force is applied by the compressed spring on both masses so their rate of change of momenta must be same and since the lighter block has lesser mass so it must have greater velocity to have an equal change in momentum as of heavier mass.
By relation:
, 
comparing momenta of above two equations we get
KElighter (2) = KEheavier (4)
KElighter = 2 KEheavier
That's true. The only way to stop an object from radiating energy
is to cool it to absolute zero. Since the temperature of space is
roughly 3 degrees above absolute zero, the atoms or molecules
of every object have some kinetic energy, and the object radiates
some heat.
Of course it also absorbs heat at the same time, mostly from the
huge number of stars shining on it.
Inertia is directly related to Mass
.
<u>Explanation</u>:
Mass means that the amount of matter of an object. Inertia indicates the resistance of the physical object. The object with high mass have more inertia too. The mass and inertia both are directly proportional to each other. Mass is the quantity that completely depends upon the inertia of the object. An object with more mass has more chance to change its resistance as they are dependent on each other.
Answer:
Explanation:
The time taken by a transverse wave to propagate from one end to another depends on the number of oscillation made by the wave itself. If the total number of oscillation of the wave is known, the time taken by the wave to propagate through can be determined.
Note that the term "period" is the time taken by a transverse wave to complete one oscillation. So if we know the number of oscillation made in one second by the wave and the total oscillation made, then we can know determine how long it will take a transverse wave to propagate from one end of the string to the other