The Pythagorean's Theorem for our situation would look like this:

So let's call the short leg s, the long leg l and the hypotenuse h. It appears that all our measurements are based on the measurement of the short leg. The long leg is 4 more than twice the short leg, so that expression is l=2s+4; the hypotenuse measure is 6 more than twice the short leg, so that expression is h=2s+6. And the short leg is just s. Now we can rewrite our formula accordingly:

And of course we have to expand. Doing that will leave us with

Combining like terms we have

Our job now is to get everything on one side of the equals sign and solve for s

That is now a second degree polynomial, a quadratic to be exact, and it can be factored several different ways. The easiest is to figure what 2 numbers add to be -8 and multiply to be -20. Those numbers would be 10 and -2. Since we are figuring out the length of the sides, AND we know that the two things in math that will never EVER be negative are time and distance/length, -2 is not an option. That means that the short side, s, measures 10. The longer side, 2s+4, measures 2(10)+4 which is 24, and the hypotenuse, 2s+6, measures 2(10)+6 which is 26. So there you go!
If you would do this in whole number form, it'll be 40/7.
Answer:3 9/20
Step-by-step explanation:
A irrational number is a number that can't be expressed as a ratio of two whole numbers. That's it.
For examples (in increasing order of difficulty)
1 is a rational number because it is 1/1
0.75 is a rational number because it is equal to 3/4
2.333... (infinite number of digits, all equal to three) is rational because it is equal to 7/3.
sqrt(2) is not a rational number. This is not completely trivial to show but there are some relatively simple proofs of this fact. It's been known since the greek.
pi is irrational. This is much more complicated and is a result from 19th century.
As you see, there is absolutely no mention of the digits in the definition or in the proofs I presented.
Now the result that you probably hear about and wanted to remember (slightly incorrectly) is that a number is rational if and only if its decimal expansion is eventually periodic. What does it mean ?
Take, 5/700 and write it in decimal expansion. It is 0.0057142857142857.. As you can see the pattern "571428" is repeating in the the digits. That's what it means to have an eventually periodic decimal expansion. The length of the pattern can be anything, but as long as there is a repeating pattern, the number is rational and vice versa.
As a consequence, sqrt(2) does not have a periodic decimal expansion. So it has an infinite number of digits but moreover, the digits do not form any easy repeating pattern.