X = 4 ; x = 3 + i ; x = 3 - i
(If you get a zero that is adding or subtracting, you always need to write it twice but change the sign do they cancel out)
f(x) = (x-4)(x-3-i)(x-3+i)
Distributing the last two parenthesis first is always the best way to start off
(x-3-i)(x-3+i) has (x-3) in common so it can be separated to
(x-3)^2 + (-i)(+i)
(x^2 - 6x + 9) ; (-i)(+i) is always +1
(x^2 - 6x + 9) + 1
(x^2 - 6x + 10)
Now multiply this with (x-4)
x^3 - 6x^2 + 10x
- 4x^2 + 24x - 40
x^3 - 10x^2 + 34x - 40 = f(x)
If we need our line to pass through point C, then we have to use the x and coordinates of point C in our new equation. If that line is to be perpendicular to AB, we also need to find the slope of AB and then take its opposite reciprocal. First things first. Point C lies at (6, 4) so we will use x = 6 and y = 4 in our equation in a bit. The coordinates of A are (-2, 4) and the coordinates of B are (2, -8) so the slope between them is

which is -3. The opposite reciprocal of -3 is 1/3. That's the slope we will use along with the points from C to write the new equation. We will do this by plugging in x, y, and m (slope) into the slope-intercept form of a line and solve for b.

and 4 = 2 + b. So b = 2. That's the y-intercept, the point on the y axis where the line goes through when x is 0. Therefore, the point you're looking for is (0, 2).
Be more specific with your question please
To solve this we are going to use the formula fro the force applied to a spring:

where

is the spring constant

is the extension
Since we know the

, we can replace that in our formula and solve for

:


where

is the acceleration

is the spring constant

is the extension

is the mass
We know for our problem that

,

, and

. So lets replace those values in our formula to find

:



We can conclude that the acceleration of the block when s=0.4m is

.