Answer:
<h2>The specific heat of the metal is 0.274951 calories/gram-degree C.</h2>
Step-by-step explanation:
Let, the specific heat of the container is x calories/gram-degree C.
The container and water gains (18 - 15) = 3 degrees C.
Hence, the transfer of heat is
.
The metal, which is dropped in the water, losses (164 - 18)= 144 degrees C.
Hence, the transfer of heat is
.
As per the given conditions,
.
2a^2b^3(4a^2+3ab^2-ab)=?
<span>
is what I presume you actually meant. </span>
<span>
Pull out the common factors of (4a^2+3ab^2-ab) and you will get </span>
<span>
a(4a+3b^2 -b) </span>
Substitute this back into the original equation and you get
<span>
2a^2b^3[a(4a+3b^2-b)] = </span>
2a^3b^3(4a+3b^2-b) =
<span>2a^3b^3(4a-b+3b^2)
</span>
19.5959179422
or if u round to the nearest whole #--> 20
Percent change=change/original times 100
change=20-16=4
original=20
change=4/20 times 100=0.2 times 100=20
answer is 20%