By letting

we get derivatives


a) Substitute these into the differential equation. After a lot of simplification, the equation reduces to

Examine the lowest degree term
, which gives rise to the indicial equation,

with roots at r = 0 and r = 4/5.
b) The recurrence for the coefficients
is

so that with r = 4/5, the coefficients are governed by

c) Starting with
, we find


so that the first three terms of the solution are

Answer:
sounds like a relationship problem
Step-by-step explanation:
that cheating wont fix.
Answer: D) 13y^25 and 2y^25
Like terms involve the same variables, and each of those variables must have the same exponents.
Another example of a pair of like terms would be 5x^3y^2 and 7x^3y^2. Both involve the variable portion "x^3y^2" which we can replace with another variable, say the variable z. That means 5x^3y^2 becomes 5z and 7x^3y^2 becomes 7z. After getting to 5z and 7z, it becomes more clear we have like terms.