Question 1:
--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
Equation: y = 5x - 2
Slope = 5
Slope of parallel line = 5
--------------------------------------------------------------------
Insert slope into the general equation y = mx + c
--------------------------------------------------------------------
y = 5x + c
--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
At point (2, -1)
y = 5x + c
-1 = 5(2) + c
c = -1 - 10
c = -11
--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 5x + c
y = 5x - 11
--------------------------------------------------------------------
Answer: y = 5x - 11
--------------------------------------------------------------------
Question 2:
--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
y = 9x
Slope = 9
Slope of the parallel line = 9
--------------------------------------------------------------------
Insert slope into the equation y = mx + c
--------------------------------------------------------------------
y = 9x + c
--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
y = 9x + c
At point (0, 5)
5 = 9(0) + c
c = 5
--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 9x + c
y = 9x + 5
--------------------------------------------------------------------
Answer: y = 9x + 5
--------------------------------------------------------------------
Answer:
x = 3
x = (-1)/2
x = 13/4
Step-by-step explanation:
Solve for x:
(2 x)/3 + 15 = 17
Put each term in (2 x)/3 + 15 over the common denominator 3: (2 x)/3 + 15 = (2 x)/3 + 45/3:
(2 x)/3 + 45/3 = 17
(2 x)/3 + 45/3 = (2 x + 45)/3:
1/3 (2 x + 45) = 17
Multiply both sides of (2 x + 45)/3 = 17 by 3:
(3 (2 x + 45))/3 = 3×17
(3 (2 x + 45))/3 = 3/3×(2 x + 45) = 2 x + 45:
2 x + 45 = 3×17
3×17 = 51:
2 x + 45 = 51
Subtract 45 from both sides:
2 x + (45 - 45) = 51 - 45
45 - 45 = 0:
2 x = 51 - 45
51 - 45 = 6:
2 x = 6
Divide both sides of 2 x = 6 by 2:
(2 x)/2 = 6/2
2/2 = 1:
x = 6/2
The gcd of 6 and 2 is 2, so 6/2 = (2×3)/(2×1) = 2/2×3 = 3:
Answer: x = 3
______________________________________________________
Solve for x:
3 x - x + 8 = 7
Grouping like terms, 3 x - x + 8 = (3 x - x) + 8:
(3 x - x) + 8 = 7
3 x - x = 2 x:
2 x + 8 = 7
Subtract 8 from both sides:
2 x + (8 - 8) = 7 - 8
8 - 8 = 0:
2 x = 7 - 8
7 - 8 = -1:
2 x = -1
Divide both sides of 2 x = -1 by 2:
(2 x)/2 = (-1)/2
2/2 = 1:
Answer: x = (-1)/2
_______________________________________
Solve for x:
4 (2 x - 6) = 2
Divide both sides of 4 (2 x - 6) = 2 by 4:
(4 (2 x - 6))/4 = 2/4
4/4 = 1:
2 x - 6 = 2/4
The gcd of 2 and 4 is 2, so 2/4 = (2×1)/(2×2) = 2/2×1/2 = 1/2:
2 x - 6 = 1/2
Add 6 to both sides:
2 x + (6 - 6) = 1/2 + 6
6 - 6 = 0:
2 x = 1/2 + 6
Put 1/2 + 6 over the common denominator 2. 1/2 + 6 = 1/2 + (2×6)/2:
2 x = 1/2 + (2×6)/2
2×6 = 12:
2 x = 1/2 + 12/2
1/2 + 12/2 = (1 + 12)/2:
2 x = (1 + 12)/2
1 + 12 = 13:
2 x = 13/2
Divide both sides by 2:
x = (13/2)/2
2×2 = 4:
Answer: x = 13/4
For 6 the answer is c because 1 fourth goes into one and a half 6 times so you do 6 times 4 feet which is 24 feet
Here's how to find the value of x:
<span>9 - 0.75 ( x + 8 ) - 5 = -6.5 find the difference of 9 - 0.75
</span><span>8.25 ( x + 8 ) - 5 = -6.5 add 5 to both sides
</span>
8.25 ( x + 8 ) = -1.5 distribute 8.25 to x and 8
8.25x + 66 = -1.5 subtract 66 from both sides
8.25x = -67.5 divide both sides by 8.25
x = 18.18181818...... the value of x is 18 2/11
hope this helps