Answer:
https://physicsabout.com/acceleration-and-velcoity/
Answer:
Explanation:
a )
Each blade is in the form of rod with axis near one end of the rod
Moment of inertia of one blade
= 1/3 x m l²
where m is mass of the blade
l is length of each blade.
Total moment of moment of 3 blades
= 3 x
x m l²
ml²
2 )
Given
m = 5500 kg
l = 45 m
Putting these values we get
moment of inertia of one blade
= 1/3 x 5500 x 45 x 45
= 37.125 x 10⁵ kg.m²
Moment of inertia of 3 blades
= 3 x 37.125 x 10⁵ kg.m²
= 111 .375 x 10⁵ kg.m²
c )
Angular momentum
= I x ω
I is moment of inertia of turbine
ω is angular velocity
ω = 2π f
f is frequency of rotation of blade
d )
I = 111 .375 x 10⁵ kg.m² ( Calculated )
f = 11 rpm ( revolution per minute )
= 11 / 60 revolution per second
ω = 2π f
= 2π x 11 / 60 rad / s
Angular momentum
= I x ω
111 .375 x 10⁵ kg.m² x 2π x 11 / 60 rad / s
= 128.23 x 10⁵ kgm² s⁻¹ .
Answer:
92.81 psia.
Explanation:
The density of water by multiplying its specific gravity by the density of sea water.
SG = density of sea water/density of water
ρ = SG x ρw
1 kg/m3 = 62.4 lbm/ft^3
= 1.03 * 62.4
= 64.27lbm/ft^3.
The absolute pressure at 175 ft below sea level as this is the location of the submarine.
P = Patm +ρgh
= 14.7 + 64.27 * 32.2 * 175
Converting to pound force square inch,
= 14.7 + 64.27 * (32.2ft/s^2) * (175ft) * (1lbf/32.2lbm⋅ft/s^2) * (1ft^2/144in^2 )
= 14.7 + 78.11 psia
= 92.81 psia.
It confirmed medeleeve's hypothesis (prediction) and showed the use of his table