Answer:
See explanation
Explanation:
A. This is a neutralization reaction.
Molecular equation;
HBr(aq) + CsOH(aq) ---------> CsBr(aq) + H20(l)
Complete ionic equation;
H^+(aq) + Br^-(aq) + Cs^(aq) + OH^-(aq) --------> Cs^+(aq) + Br^- + H20(l)
Net ionic equation;
H^+(aq) + OH^-(aq) --------> H20(l)
B. This is a gas forming reaction;
H2SO4(aq) + Na2CO3(aq) ------->Na2SO4(aq) + H2O(l) + CO2(g)
Complete ionic equation;
2H^+(aq) + SO4^-(aq) + 2Na^+(aq) + CO3^2-(aq) ------->2Na^+(aq) + SO4^-(aq) + H2O(l) + CO2(g)
Net ionic equation;
2H^+(aq) + CO3^2-(aq) -------> + H2O(l) + CO2(g)
C. This a precipitation reaction
Molecular equation;
CdCl2(aq) + Na2S(aq) ------->CdS(s) + 2NaCl(aq)
Complete ionic equation;
Cd^2+(aq) + 2Cl^-(aq) + 2Na^+(aq) + S^2-(aq) ---------> CdS(s) + 2Na^+(aq) + 2Cl^-(aq)
Net ionic equation;
Cd^2+(aq) + S^2-(aq) ---------> CdS(s)
B. Fossil
Why? Well skeleton seems like another answer BUT the definition of a fossil is an imprint of an organism on rock.
Example: A dinosaur presses it’s foot in dirt and it leaves a footprint or ‘fossil’ behind
Answer:
pH = 2.46
Explanation:
Hello there!
In this case, since this neutralization reaction may be assumed to occur in a 1:1 mole ratio between the base and the strong acid, it is possible to write the following moles and volume-concentrations relationship for the equivalence point:

Whereas the moles of the salt are computed as shown below:

So we can divide those moles by the total volume (0.021L+0.0066L=0.0276L) to obtain the concentration of the final salt:
![[salt]=0.01428mol/0.0276L=0.517M](https://tex.z-dn.net/?f=%5Bsalt%5D%3D0.01428mol%2F0.0276L%3D0.517M)
Now, we need to keep in mind that this is an acidic salt since the base is weak and the acid strong, so the determinant ionization is:

Whose equilibrium expression is:
![Ka=\frac{[C_6H_5NH_2][H_3O^+]}{C_6H_5NH_3^+}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5NH_2%5D%5BH_3O%5E%2B%5D%7D%7BC_6H_5NH_3%5E%2B%7D)
Now, since the Kb of C6H5NH2 is 4.3 x 10^-10, its Ka is 2.326x10^-5 (Kw/Kb), we can also write:

Whereas x is:

Which also equals the concentration of hydrogen ions; therefore, the pH at the equivalence point is:

Regards!
Answer:
Option (C) 1.30 moles
Explanation:
The following data were obtained from the question:
Volume (V) = 20L
Temperature (T) = 373K
Pressure (P) = 203 kPa
Gas constant (R) = 8.31 L.kPa/mol.K.
Number of mole (n) =...?
The number of mole of the gas in the container can obtained by applying the ideal gas equation as illustrated below:
PV = nRT
Divide both side by RT
n = PV /RT
n = 203 x 20 / 8.31 x 373
n = 1.30 mole.
Therefore, 1.30 mole of the gas is present in the container.