I would say Na. Oxygen has 2 valence electrons and when reacting with other molecules, the ones with the fullest or emptiest shells will react the least. Both H2 and Na are in the Alkali Metals in the first row, but since H2 has 2 molecules, it would use more oxygen than Ana
In my opinion I believe it would be motion because depending on how fast the person is going it would determine the outcome of the race
*The molality of a solution is calculated by taking the moles of solute and dividing by
the kilograms of solvent* Basically if we had 1.00 mole of sucrose (it's about 342 3 grams) and
proceeded to mix it into exactly 1.00 liter water. It would dissolve and make sugar
water. We keep adding water, dissolving and stirring until all the solid was gone. We
then made sure everything was well-mixed.
What would be the molality of this solution? Notice that my one liter of water weighs
1000 grams (density of water = 1.00 g / mL and 1000 mL of water in a liter).
Explanation:
Moles of metal,
=
4.86
⋅
g
24.305
⋅
g
⋅
m
o
l
−
1
=
0.200
m
o
l
.
Moles of
H
C
l
=
100
⋅
c
m
−
3
×
2.00
⋅
m
o
l
⋅
d
m
−
3
=
0.200
m
o
l
Clearly, the acid is in deficiency ; i.e. it is the limiting reagent, because the equation above specifies that that 2 equiv of HCl are required for each equiv of metal.
So if
0.200
m
o
l
acid react, then (by the stoichiometry), 1/2 this quantity, i.e.
0.100
m
o
l
of dihydrogen will evolve.
So,
0.100
m
o
l
dihydrogen are evolved; this has a mass of
0.100
⋅
m
o
l
×
2.00
⋅
g
⋅
m
o
l
−
1
=
?
?
g
.
If 1 mol dihydrogen gas occupies
24.5
d
m
3
at room temperature and pressure, what will be the VOLUME of gas evolved?