First, let’s all acknowledge that whoever comes up with problems like this WANTS kids to hate math...smh
I’m sure there is a prettier way to solve this, but here’s what I did:
8(2.25) + 3(22.50) =
18 + 67.50 = 85.50 per “set” of balls/jerseys
400/85.50 = 4.678 = number of “sets” he can buy. Round down to 4 so we have room for tax.
85.5 x 4 “sets”= $342
Tax on 342 is 0.06 x 342 = 20.52
$342 + 20.52 = $362.52 spent
Basketballs = 4 sets x 8 balls per set= 32
Jerseys = 4 sets x 3 jerseys per set= 12
32 basketballs, 12 jerseys, $362.52 spent
Answer:
Length- 14 Width- 100
Step-by-step explanation:
First: 7x2=14
Then: 114-14=100
Hope this helps
-Mercury
Answer: D, Y, X
<u>Step-by-step explanation:</u>
The (salad, sandwich) coordinates are as follows:
A: (0, 10)
B: (1, 8)
C: (2, 6)
D: (3, 4) MOST EQUAL AMOUNTS
E: (4, 2)
F: (5, 0)
X: (4, 8) OUTSIDE OF THE PRODUCTION LINE
Y: (1, 3) UNDER THE PRODUCTION LINE
184/525
(this is me adding characters)
Answer: The ratio is 2.39, which means that the larger acute angle is 2.39 times the smaller acute angle.
Step-by-step explanation:
I suppose that the "legs" of a triangle rectangle are the cathati.
if L is the length of the shorter leg, 2*L is the length of the longest leg.
Now you can remember the relation:
Tan(a) = (opposite cathetus)/(adjacent cathetus)
Then there is one acute angle calculated as:
Tan(θ) = (shorter leg)/(longer leg)
Tan(φ) = (longer leg)/(shorter leg)
And we want to find the ratio between the measure of the larger acute angle and the smaller acute angle.
Then we need to find θ and φ.
Tan(θ) = L/(2*L)
Tan(θ) = 1/2
θ = Atan(1/2) = 26.57°
Tan(φ) = (2*L)/L
Tan(φ) = 2
φ = Atan(2) = 63.43°
Then the ratio between the larger acute angle and the smaller acute angle is:
R = (63.43°)/(26.57°) = 2.39
This means that the larger acute angle is 2.39 times the smaller acute angle.