Answer:
It will float
Explanation:
its density is lower than density of water
Its density is 670 / 782 = 0.856 kg/m³
Incomplete question as time is missing.I have assumed some times here.The complete question is here
Calculate the displacement and velocity at times of (a) 0.500 s, (b) 1.00 s, (c) 1.50 s, (d) 2.00 s, and (e) 2.50 s for a rock thrown straight down with an initial velocity of 10 m/s from the Verrazano Narrows Bridge in New York City. The roadway of this bridge is 70.0 m above the water.
Explanation:
Given data
Vi=10 m/s
S=70 m
(a) t₁=0.5 s
(b) t₂=1 s
(c) t₃=1.5 s
(d) t₄=2 s
(e) t₅=2.5 s
To find
Displacement S from t₁ to t₅
Velocity V from t₁ to t₅
Solution
According to kinematic equation of motion and given information conclude that v is given by

Also get the equation of displacement

These two formula are used to find velocity as well as displacement for time t₁ to t₅
For t₁=0.5 s

For t₂
For t₃

For t₄

For t₅

Answer:
The magnifying power of this telescope is (-60).
Explanation:
Given that,
The focal length of the objective lens of an astronomical telescope, 
The focal length of the eyepiece lens of an astronomical telescope, 
To find,
The magnifying power of this telescope.
Solution,
The ratio of focal length of the objective lens to the focal length of the eyepiece lens is called magnifying of the lens. It is given by :


m = -60
So, the magnifying power of this telescope is 60. Therefore, this is the required solution.
Answer:
There is an electric potential between the plates which is released as the
capacitor discharges.
Explanation:
In Electrical or Magnetic forces, opposite charges generate a force field.