Answer:
X = 69.1 x 10⁻⁶ m = 69.1 μm
Explanation:
The relationship between the motion of the moveable mirror and the fringe count of the Michelson's Interferometer is given by the following formula:
d = mλ/2
where,
d = distance moved by the mirror = X = ?
m = No. of Fringes counted = 246
λ = wavelength of light entering interferometer = 562 nm = 5.62 x 10⁻⁷ m
Therefore,
X = (246)(5.62 x 10⁻⁷ m)/2
Therefore,
<u>X = 69.1 x 10⁻⁶ m = 69.1 μm</u>
For this problem, we are asked to calculate for the distance traveled. We set up the equations as follows:
Distance = 61 km/hr * (time + 20.8/60 s) Distance = 98.5 km/hr * time
We equate the two equations, then we can solve for the time spent on the trip. Hope this answers the question. Have a nice day.
The kinetic energy will rise once the body comes back down. As it goes up, the potential energy increases while the kinetic energy decreases. Once the body is at its maximum height, the potential energy is at it’s highest. When it starts falling, it will gain kinetic energy and lose potential energy.
Answer:
ectron's further from the nucleus are held more weakly by the nucleus, and thus can be removed by spending less energy. Hence we say they have higher energy. The Coulomb interaction energy between a nucleus of atomic number and an ele
C) CFCs is the correct answer.