Answer: An equation is missing in your question below is the missing equation
a) ≈ 8396
b) 150 nm/k
Explanation:
<u>A) Determine the number of Oscillators in the black body</u>
number of oscillators = 8395
attached below is the detailed solution
<u>b) determine the peak wavelength of the black body </u>
Black body temperature = 20,000 K
applying Wien's law / formula
λmax = b / T ------ ( 1 )
T = 20,000 K
b = 3 * 10^6 nm
∴ λmax = 150 nm/k
Answer:

Explanation:
The force on the point charge q exerted by the rod can be found by Coulomb's Law.

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.
In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.
We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.
Applying Coulomb's Law:

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.
Now, we have to write 'dq' in term of the known quantities.

Now, substitute this into 'dF':

Now we can integrate dF over the rod.

Explanation:
Given that,
The mass of rock, m = 2.35-kg
It was released from rest at a height of 21.4 m.
(a) The kinetic energy is given by : 
As the rock was at rest initially, it means, its kinetic energy is equal to 0.
(b) The gravitational potential energy is given by : 
It can be calculated as :

(c) The mechanical energy is equal to the sum of kinetic and potential energy such that,
M = 0 J + 492.84 J
M = 492.84 J
Hence, this is the required solution.
Answer:
"Crust" refers to a
terrestrial planet's outermost surface.
In general, the Earth's crust is divided into
older, thicker continental crust and younger, denser oceanic crust.
...
The thin, 40-kilometer (25-mile) deep crust of our planet — just
1 per cent of Earth's mass — contains all known universe existence.
Explanation:
Continental crust is thicker, 22 miles (35 km) on average and less dense than oceanic crust, which accounts for its mean surface elevation of about 3 miles (4.8 km) above that of the ocean floor (Archimedes’ principle). Continental crust is more complex than oceanic crust…