Answer: FIRST OPTION
Step-by-step explanation:
<h3>
The missing picture is attached.</h3>
By definition, given a Quadratic equation in the form:

Where "a", "b" and "c" are numerical coefficients and "x" is the unknown variable, you caN use the Quadratic Formula to solve it.
The Quadratic Formula is the following:

In this case, the exercise gives you this Quadratic equation:

You can identify that the numerical coefficients are:

Therefore, you can substitute values into the Quadratic formula shown above:

You can identify that the equation that shows the Quadratic formula used correctly to solve the Quadratic equation given in the exercise for "x", is the one shown in the First option.
Answer: Equations (b) and (e) do not have solutions
Step-by-step explanation: b) The x cancels out (-10x + 35) = -10x + 318; 35 = 318???? NO. e) 3(x + 2) + 1 = x + 2(4 + x); 3x + 7 = 3x + 8. The x cancels out again.
The other s can be solved for x.
I assume that the parabola in this particular problem is one whose axis of symmetry is parallel to the y axis. The formula we're going to use in this case is (x-h)2=4p(y-k). We know variables h and k from the vertex (1,20) but p is not given. However, we can solve for p by substituting values x and y in the formula with the y-intercept:
(0-1)^2=4p(16-20)
Solving for p, p=-1/16.
Going back to the formula, we can finally solve for the x-intercepts. Simply fill in variables p, h and k then set y to zero:
(x-1)^2=4(-1/16)(0-20)
(x-1)^2=5
x-1=(+-)sqrt(5)
x=(+-)sqrt(5)+1
Here, we have two values of x
x=sqrt(5)+1 and
x=-sqrt(5)+1
thus, the answers are: (sqrt(5)+1,0) and (-sqrt(5)+1,0).